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Abstract

This paper explores the manner in which the structure of a social network constrains
the level of inequality that can be sustained among its members. We assume that any
distribution of value across the network must be stable with respect to coalitional
deviations, and that players can form a deviating coalition only if they constitute a
clique in the network. We show that if the network is bipartite, there is a unique stable
payoff distribution that is maximally unequal in that it does not Lorenz dominate any
other stable distribution. We obtain a complete ordering of the class of bipartite
networks and show that those with larger maximum independent sets can sustain
greater levels of inequality. The intuition behind this result is that networks with
larger maximum independent sets are more sparse and hence offer fewer opportunities
for coalitional deviations. We also demonstrate that standard centrality measures do
not consistently predict inequality. We extend our framework by allowing a group of
players to deviate if they are all within distance k of each other, and show that the
ranking of networks by the extent of extremal inequality is not invariant in k.
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1 Introduction

This paper explores the manner in which the structure of a social network constrains
the level of inequality that can be sustained among its members. The key idea is that any
distribution of value must be stable with respect to coalitional deviations, where the set of
feasible coalitions is itself constrained by the requirement that only groups of players that are
mutually connected can jointly deviate. That is, we allow for deviations only by cliques. A
payoff distribution is said to be stable if there is no clique in the network that can profitably
deviate. The main research question is the following: What is the relationship between the
structure of the network and the maximum level of inequality that can be sustained among
its members?

To compare payoff distributions in terms of their level of inequality, we adopt the standard
criterion of Lorenz dominance. Lorenz dominance only provides a partial ordering of value
distributions so the maximum level of inequality may not be well defined in general. We
show, however, that when the network is bipartite and the value of a network is a strictly
convex function of the number of players, there is a unique stable value distribution that does
not Lorenz dominate any other distribution. Hence the most unequal value distribution is
well defined. We refer to this distribution as the extremal distribution of this network. Given
that the extremal distribution is well defined, we obtain a complete ordering of the class of
bipartite networks with respect to the level of extremal inequality that they can sustain. The
ordering is based on the cardinality of maximum independent sets: bipartite networks which
have a larger maximum independent sets can sustain greater levels of extremal inequality.1

We then extend this framework to include the case in which players can jointly deviate if
they are all within distance k of each other, and explore the manner in which extremal
inequality changes as k is varied. Although inequality declines as k increases, it can do so
at different rates in different networks. As a result, the ranking of networks by the extent of
extremal inequality is not invariant in k.

The idea that network structure influences the allocation of value was initially proposed
in a seminal paper by Myerson (1977), who assumed that a coalition of individuals could gen-
erate value if and only if they were all connected to each other along some path that did not
involve anyone outside the coalition. Such paths could be of arbitrary length, which entails
the implicit assumption that communication through intermediaries is as effective as direct
communication in the process of coalition formation. This assumption has been maintained
in the significant literature on communication games that has followed the work of Myerson;
see Slikker and van den Nouweland (2001) for a survey. In contrast, we assume that devi-
ating coalitions require direct communication (or at least sufficiently short paths) between
members. Additionally, while Myerson’s objective was an axiomatic characterization of a
particular value distribution, our concern here is simply with the extent of inequality that
is consistent with stability.

A number of writers have previously explored determinants of the degree of inequality in

1An independent set in a network is a set of vertices such that no pair of vertices in the set are connected
to each other. An independent set is maximum if there is no independent set with greater cardinality. See
Section 2 for formal definitions.
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equilibrium networks. Goyal and Vega-Redondo (2007) propose an allocation rule whereby
connections produce a surplus that is shared with essential intermediaries in the network
(see also Hojman and Szeidl, 2008). This model captures the intuition of Burt (2005, p.
4) that “people who do better are somehow better connected,” the underlying idea being
that centrally located individuals may hold up players that are not directly connected, or for
other reasons secure a large share of the goods or services that flow through the network. A
number of centrality measures have been proposed, including the number of neighbors of a
player, his closeness (mean shortest path to other players) and his betweenness (the fraction
of shortest paths between all pairs of players in a network that include the player); see,
for instance, Jackson (2008). Inequality in these indices of centrality are thought to induce
corresponding levels of inequality in the allocation of value in the network, a supposition for
which there is some empirical evidence (see, for instance, Brass, 1984; Podolny and Baron,
1997).

Our approach is different in two important respects. First, in these papers, an agent’s
central position confers the ability to gain larger shares of the surplus, the intuition being that
essential intermediaries can extract rents through their control of flows between players that
are not otherwise connected. These “middleman” models are implicitly based on the idea
that competition reduces inequality, and monopoly increases it. The centrality measures thus
explain distributional advantage by analyzing how well connected the rich are. While these
intuitions are undoubtedly correct in many settings, our model stresses another dimension
that determines inequality: how isolated the poor are. Intuitively, if the network is dense,
inequality will be hard to sustain as disadvantaged players can jointly deviate. Conversely,
if the network is sparse, peripheral players can more readily be exploited.2

A second important difference is that the papers cited above employ an exogenously given
profile of payoff functions that determines for each network the allocation of value between
players. The focus is accordingly on the level of inequality that arises in equilibria of the
network formation model. This contrasts with the work of Myerson (1977) and this paper,
in which networks are given exogenously, and the inequality supportable on that network is
investigated in light of the posited rules on coalitional deviation.

Dutta and Ray (1989) also study the interaction between stability and equality. They
propose a solution concept that selects among a set of allocations that satisfy core-like
participation constraints the one that is most egalitarian in terms of Lorenz dominance. An
important difference between their work and ours is that Dutta and Ray do not restrict the
set of coalitions that can form and do not therefore explore the manner in which inequality
varies with network structure. Focusing on hierarchies, Demange (2004) restricts coalitional
deviations to teams and shows that this leads to a unique stable outcome for a range of
games. In contrast, we explore deviations by cliques rather than teams. Stable allocations
are typically not unique in our framework, and our focus is on allocations that are extremal
in a well-defined sense. Finally, Bramoullé and Kranton (2007) find that independent sets
play a central role in an entirely different context: the private provision of local public

2Even in the original framework of Myerson (1977), the standard intuition need not apply. Kalai, Postle-
waite, and Roberts (1978) show that the central player in a star network can be worse off at a core allocation
than he would be at any core allocation in a complete network.
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goods (see also Corbo, Calvó-Armengol, and Parkes, 2007). They show that there is a
class of equilibria that can be characterized in terms of the behavior of players belonging
to a maximal independent set.3 Their model is one of a noncooperative game played on a
network, and differs in fundamental respects from our own. It is interesting, therefore, to
note that independent sets play a critical role in both solutions.

While our model is too abstract to be directly applicable to empirical cases, we think
that the approach captures an important aspect of real world conflict over the joint gains
to cooperation. It suggests, for example, that geographically dispersed outsourcing may be
profitable for a firm as it limits the opportunities for suppliers to communicate and hence
reduces the likelihood that they could jointly deviate. It also provides a possible explanation
of the contrast, noted by historians and archaeologists, between the stability of high levels
of inequality characteristic of relationships between a landed class and dependent farmers in
ancient societies and the frequent challenges to unequal distribution of the surplus in indus-
trial production during the modern era (Hobsbawm, 1964; Trigger, 2003). An explanation
consistent with our model is that agrarian inequality is based on the infrequent delivery of
crops by otherwise isolated farmers, while inequality between industrial employers and work-
ers is based on the daily delivery of the worker’s own labor to a common site (the factory).
As a result employees have direct links based on their common place of employment, while
share croppers and other agrarian producers do not. These differences may also help explain
why one half is the most common crop share, while the labor share in industrial production
is commonly much higher.

2 Distributions on networks

2.1 Networks

Players are located on a network. A network is a pair (N, g), where N = {1, . . . , n} is
a set of vertices and g is an n × n matrix, with gij = 1 denoting that there is a link or
edge between two vertices i and j, and gij = 0 meaning that there is no link between i
and j. A link between i and j is denoted by {i, j}. We focus on undirected networks, so
gij = gji. Moreover, we set gii = 0 for all i. In the following, we fix the vertex set N and
denote a network by the matrix g. If gij = 1, that is, if there is a link between i and j, we
say that i and j are neighbors or, alternatively, that they are adjacent in g. A clique is a
set of pairwise adjacent vertices. The number of neighbors of a vertex is termed its degree.
The degree distribution of a network is a vector d = (d0, . . . , dn−1), with dm the number of
vertices with degree m.

A path between two vertices i and j in a network g is a list of vertices i1, i2, . . . , iK such
that i1 = i and iK = j, and gitit+1 = 1. If i = j, the path i1, i2, . . . , iK is called a cycle. If
there is a path between any two vertices in the network, we say that the network is connected.
The length of a path i1, i2, . . . , iK is K − 1. The distance dij(g) between two vertices i and j

3A maximal independent set is an independent set that is not properly contained in another independent
set. Note that a maximum independent set (one that has maximum cardinality among independent sets) is
maximal, while the converse need not hold. Our results pertain to maximum independent sets.
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Figure 2.1: (a) A bipartite network, with independent sets {i1, i4} and {i2, i3}. (b) A network
that is not bipartite: there do not exist two independent sets that partition the set of vertices.
(c) A bipartite network that is a tree.

in network g is defined as follows. If i = j, then dij(g) = 0. If i 6= j, then dij(g) is equal to
the length of the shortest path between i and j in g, if such a path exists, and ∞ otherwise.

An independent set in a network is a set of vertices that are pairwise nonadjacent. A set
of vertices forms a maximum independent set in g if it is an independent set and there is
no independent set in g with a strictly higher cardinality. Note that while a network may
have multiple (maximum) independent sets, the cardinality of a maximum independent set
is unique.

We derive several results for bipartite networks. A network is bipartite if its vertex set
is the union of two disjoint (possibly empty) independent sets; see Figure 2.1. It can be
shown that a network is bipartite if and only if it does not have a cycle of odd length. The
class of bipartite networks contains the set of trees, which are networks without a cycle (see
Figure 2.1(c)).

2.2 Stable allocations

Consider a set of players located on a network. The players jointly generate a surplus,
which is an increasing and strictly convex function of the network size. The surplus is divided
among the players in the network, in such a way that no coalition of players that form a
clique in the network can profitably deviate.

More precisely, consider a set of players N = {1, . . . , n}, and a network g with vertex set
N . Hence, each player is associated with a vertex. As in Myerson (1977), players generate
value if they are connected by some path. The value generated by a set of players S is given
by f(|S|), where f is a strictly convex and increasing function with f(0) = 0. We assume
that f is continuous and twice differentiable. Without loss of generality, we assume that the
network is connected, that is, there is a path between each pair of players. Hence, the value
of g is f(n).

This surplus is divided among the players. The distribution of the surplus is determined
by the deviating coalitions that can form. We assume that only cliques can jointly deviate.
Formally, an allocation is any vector x = (x1, . . . , xn) ∈ RN . An allocation x is feasible if
xi ≥ 0 for all i ∈ N , and ∑

i∈N

xi ≤ f(n). (2.1)

We say that an allocation x is stable on g if no clique can gain by deviating: for each clique
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C in g, ∑
i∈C

xi ≥ f(|C|). (2.2)

That is, for an allocation to be stable, the members of each clique have to get at least as
much collectively under the allocation as they would if they were to deviate collectively and
form their own network. In Section 6, we allow for players to coordinate deviations over
larger distances.

Since f is a (strictly) convex function, the egalitarian allocation given by xi = f(n)/n is
always stable, so that the set of feasible and stable allocations is nonempty. It is immediate
that the set of feasible and stable allocations, being a set of vectors satisfying a set of weak
inequalities (2.1) and (2.2), is closed and convex. The definition of the set of feasible and
stable allocations is reminiscent of the definition of the core in transferable-utility games
(TU-games). The difference is that while inequality (2.2) needs to hold for all coalitions for
x to be in the core, we only require the inequality to hold for subsets of players that are
sufficiently close in the network. Hence, the set of feasible and stable allocations is a superset
of the core of an appropriately defined TU-game where the value function is extended to all
coalitions. It can be shown that even though the function f is strictly convex, the TU-game
with the value function extended to all coalitions will typically not be a convex game in the
sense of Shapley (1971); see Van den Nouweland and Borm (1991).

2.3 Inequality

We want to compare allocations in terms of the inequality they generate. Corresponding
to any allocation x is a distribution x̄ = (x̄1, ..., x̄n). The distribution x̄ is simply a permuta-
tion of the elements of x that places them in (weakly) increasing order: x̄1 ≤ x̄2 ≤ ... ≤ x̄n.
We say that a distribution x̄ is feasible and stable on g if there exists a corresponding allo-
cation that is feasible and stable on g. While the egalitarian distribution is always stable,
there may be multiple stable distributions in general, some of which may be characterized
by high levels of inequality.

To compare distributions in terms of the level of inequality, we use the criterion of Lorenz
dominance. Consider two distributions x̄ = (x̄1, ..., x̄n), ȳ = (ȳ1, ..., ȳn) ∈ Rn

+ such that∑
i∈N

x̄i =
∑
i∈N

ȳi = f(n).

Then, we say that x̄ Lorenz dominates ȳ if, for each m = 1, ..., n,

m∑
i=1

x̄i ≥
m∑
i=1

ȳi,

with strict inequality for some m. If x̄ Lorenz dominates ȳ, we say that x̄ is a more equal
distribution than ȳ.

We call a stable distribution x̄ on g which is feasible extremal if there is no distribution
ȳ that is stable and feasible such that x̄ Lorenz dominates ȳ. Since the Lorenz dominance
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Figure 3.1: (a) The network g of Example 3.1. The numbers represent the unique allocation
consistent with the extremal distribution for g. (b) The network g′ of Example 3.1. The
numbers represent one of the allocations that is consistent with the extremal distribution
for g′.

criterion only provides a partial order on the set of feasible and stable distributions, there
may be multiple extremal distributions for a given network. We say that a network g has a
unique extremal distribution if the set of extremal distributions on g is a singleton.

3 Examples

The concepts of stability and extremal distributions may be illustrated with a few exam-
ples.

Example 3.1 Suppose f(n) = n2 and consider the networks g and g′ depicted in Fig-
ure 3.1(a) and (b), respectively. The value of both networks is f(4) = 16. The conditions
for stability require that each individual is assigned at least f(1) = 1, and each pair of
neighbors is assigned at least f(2) = 4. Both networks have a unique extremal distribution,
given by x̄ = (1, 1, 1, 13) and x̄′ = (1, 1, 3, 11), respectively. Hence, x̄′ dominates x̄. The
extremal distribution for g′ corresponds to a unique allocation, as depicted in Figure 3.1:
The players with three neighbors receives 13 while the other players each get 1. By contrast,
the extremal distribution for g is consistent with a many different allocations to nodes. Any
allocation such that two unconnected nodes receive 1 and the other two are assigned 3 and
11 is stable. An example of such an allocation is shown in Figure 3.1(b). /

In Example 3.1, what properties of network g allow it to support a more unequal distri-
bution than g′? One possibility is the fact that the distribution of the number of neighbors
that each player has in g is itself more unequal than that in g′. Could the fact that the degree
distribution d′ for g′ Lorenz dominates the degree distribution d for g be related to the fact
that x̄′ Lorenz dominates x̄? As the following example shows, the answer is negative.

Example 3.2 Suppose f(1) = 1, f(2) = 3, and f(10) = 20. Consider the networks h and
h′ in Figure 3.2(a) and (b), respectively. In both cases, the value generated by the network
is equal to 20. The stability conditions require that each individual be assigned at least

7
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1
2 1 2 1 2 1 8 1

(b)

Figure 3.2: (a) The network h of Example 3.2. (b) The network h′ of Example 3.2. The
numbers represent represent one of the allocations consistent with the unique extremal dis-
tribution in each case.

f(1) = 1, and each pair of neighbors be assigned at least f(2) = 3. Both networks have a
unique extremal distribution, given by

x̄ = (1, 1, 1, 1, 1, 2, 2, 2, 2, 7),

x̄′ = (1, 1, 1, 1, 1, 1, 2, 2, 2, 8).

Hence, x̄ Lorenz dominates x̄′. /

In Example 3.2, h′ can sustain greater inequality than h. This is the opposite of what one
would predict based on inequality in the degree distributions of h and h′, which are given
by:

d = (1, 1, 1, 1, 1, 2, 2, 3, 3, 3)

d′ = (1, 1, 1, 2, 2, 2, 2, 2, 2, 3),

respectively. Clearly d′ Lorenz dominates d, even though x̄ Lorenz dominates x̄′. The level of
extremal inequality sustainable in a network therefore does not depend in a straightforward
manner on inequality of the degree distribution.

Like a player’s degree, his betweenness is often taken as a measure of a player’s prominence
and as a determinant of a player’s payoffs. The betweenness of a player i in a network is the
number of shortest paths between v and w player i belongs to over the total number of all
shortest paths between v and w, averaged over all v and w (see, for example, Jackson, 2008).
A player’s betweenness may be interpreted as a measure of how essential he is in information
transmission between other players. However, inequality in betweenness fares no better in
explaining extremal inequality, as the next example demonstrates.

Example 3.3 Suppose f(1) = 1, f(2) = 3, and f(7) = 12. Consider the network in
Figure 3.3. The value generated by the network is 12. The stability conditions require that
each individual is assigned at least f(1) = 1, and that each pair of neighbors is assigned at
least f(2) = 3. The network has a unique extremal distribution, given by

x̄ = (1, 1, 1, 1, 2, 2, 4).

8



1 2 1 4 1

2

1

Figure 3.3: The network of Example 3.3. The player with the greatest degree, betweenness
and closeness gets the lowest payoff in any extremal allocation.

This distribution is consistent with different allocations to the players, but in any such
allocation, each player represented by an open circle (◦) is assigned f(1) = 1. This includes
the player with the highest degree. This player also has the highest betweenness (0.43), more
than double than that of his neighbors, both of whom receive higher payoffs. /

Taken together Examples 3.2 and 3.3 reveal that a focus on inequality in the degree or
betweenness in attempting to understand the extent of inequality in social networks is mis-
leading in two respects. First, networks with more equal degree or betweenness distributions
may be capable of sustaining greater inequality than those with more unequal distributions.
And second, by either measure, well-connected players can do substantially worse than less
well-connected players in a given network. Inspection of Figure 3.3 also shows that another
important centrality measure, closeness, also fails to predict high payoffs.4 In the next sec-
tion, we show that rather than the degree or betweenness distribution, it is the cardinality
of the largest independent sets in a network that is most informative about the extent to
which inequality can be sustained in the special case of bipartite networks.

4 Stable inequality in bipartite networks

In this section, we first show that any bipartite network has a unique extremal distribu-
tion. We then investigate how the unique extremal distribution changes for bipartite net-
works when the network structure is varied. The class of bipartite networks is an important
one in the network literature in economics, as it it covers the extensively studied buyer-seller
networks and it contains the class of trees. Trees play an important role in the network
formation literature as in many cases, equilibrium networks are minimally connected.

We first consider uniqueness of the extremal distribution. Let A be a maximum indepen-
dent set in g. Let ` ∈ N \A be an arbitrary player not belonging to A. Define the allocation
x∗ by

x∗i =


f(1) if i ∈ A,
f(2)− f(1) if i ∈ N \ (A ∪ {`}),
f(n)− |A|f(1) + (n− |A| − 1)f(2) if i = `.

(4.1)

The corresponding distribution is denoted by x̄∗.

4The closeness of a player in the network is the average length of the shortest paths to other players
(Jackson, 2008).
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Figure 4.1: (a) The network h of Example 3.2. (b) The network h′ of Example 3.2. The
numbers represent one of the allocations consistent with the extremal distribution in each
case. In both (a) and (b), vertices belonging to a maximum independent set are marked by
white circles (◦)

Theorem 4.1 If g is a bipartite network, then x̄∗ is its unique extremal distribution.

The proof can be found in Appendix A. The idea behind the proof of Theorem 4.1 is simple.
The allocation x∗ assigns f(1) to each player in a maximum independent set, f(2) − f(1)
to all players not in the maximum independent set except `, and the remainder to `. Under
any other stable and feasible allocation, the total value allocated to the t players with the
smallest assignment must always be as least as large as this sum under x∗ for any t, so that
any stable and feasible distribution that is not equal to x̄∗ must Lorenz dominate it. We
show this by dividing the set of players into pairs of neighbors (which together need to get
at least f(2) if the allocation is to be stable) and “unmatched” players (who need to get at
least f(1) under any stable allocation). Using this, we show that the proposed allocation x∗

satisfies all the constraints implied by stability in such a way as to minimize the cumulative
sum of the t smallest assignments, making it the unique extremal distribution.

As a corollary of Theorem 4.1, we find that bipartite networks can be ranked in terms of
extremal inequality by the cardinality of their maximum independent sets. Hence, even
though the Lorenz dominance relation is not a complete order, we obtain a complete order
on the set of bipartite networks.

Corollary 4.2 Consider any two bipartite networks g, g′ with vertex set N . Let A and A′

denote any maximum independent sets, and x̄ and x̄′ the unique extremal distributions in
g and g′ respectively. Then, x̄ = x̄′ if and only if |A| = |A′|. If |A| 6= |A′|, then x̄ Lorenz
dominates x̄′ if and only if |A| < |A′|.

We can now return to Example 3.2 to apply this result. Although h has for instance a
more unequal degree distribution then h′,5 the cardinality of its maximum independent set
is 5, as compared to 6 for h′. A direct application of Theorem 4.1 implies that h′ can sustain
a more unequal payoff distribution; see Figure 4.1.

5It can easily be checked that the same holds for betweenness, while h′ has a more unequal distribution
of closeness than h.
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Figure 5.1: (a) The network q of Example 5.1. The numbers represent one of the allocations
consistent with the unique extremal distribution for q. (b) The network q′ of Example 5.1.
The numbers represent represent one of the allocations consistent with the unique extremal
distribution for q′.

5 General networks

What can one say about more general networks? There are two issues to consider: the
uniqueness of the extremal distribution for a given network, and the ordering of networks
with respect to their extremal distributions. Unfortunately, the proof of Theorem 4.1 cannot
be easily extended to more general networks. The reason is that in the case of bipartite
networks, only deviations by individual players or by neighbors are allowed, so that the
unique extremal distribution is easy to characterize. By contrast, general networks can
contain cliques with three or more players, so that deviations by larger groups are allowed.
In that case, candidate extremal distributions are harder to characterize.

Even if a uniqueness result could be obtained, it would not be as straightforward to rank
networks in terms of the inequality of their extremal distribution, as the following example
shows. This example demonstrates that two networks that are in the same equivalence
class with respect to the cardinality of their maximum independent sets may nevertheless
be unambiguously ranked with respect to their extremal distributions.

Example 5.1 Suppose f(n) = n2, and consider the networks q and q′ in Figure 5.1(a) and
(b), respectively. Both networks have unique extremal distributions, given by

x̄ = (1, 1, 3, 3, 17),

x̄′ = (1, 1, 3, 5, 15),

so x̄′ Lorenz dominates x̄. /

The previous example shows that two networks with the same cardinality of their max-
imum independent sets can be unambiguously ranked with respect to their extremal dis-
tributions. In contrast, the following example shows that two networks that differ in the
cardinality of their maximum independent set cannot necessarily be ranked with respect to
their extremal distributions.

Example 5.2 Suppose f(n) = n2, and consider the networks r and r′ in Figure 5.2(a) and
(b), respectively. Both networks have unique extremal distributions, given by

x̄ = (1, 1, 1, 1, 1, 3, 3, 3, 3, 83),

x̄′ = (1, 1, 1, 1, 1, 1, 3, 5, 7, 79).
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Figure 5.2: (a) The network r of Example 5.2. The numbers represent one of the allocations
consistent with the unique extremal distribution for r. (b) The network r′ of Example 5.2.
The numbers represent represent one of the allocations consistent with the unique extremal
distribution for r′.

These two distributions are not comparable based on the Lorenz criterion. /

6 Broader coalitions

So far, we have only allowed for deviations of cliques. This presumes that players can
coordinate on a deviation only if they are all directly connected, that is, if the distance
between each pair of players in the coalition is equal to one. What happens if we allow for
deviations by coalitions of players that are all within distance k of each other in the network?

Given a network, define a k-coalition to be a set of players that are all within distance k
of each other. As before, the value that a k-coalition C can obtain on its own is f(|C|). We
say that an allocation x is k-stable on g if, for each k-coalition C in g,∑

i∈C

xi ≥ f(|C|).

Hence, no k-coalition can profitably deviate from a k-stable allocation. Stability, as defined
in Section 2, corresponds to k-stability for k = 1. A k-stable distribution x̄ on g which is
feasible is called k-extremal if there is no distribution ȳ that is k-stable and feasible such
that x̄ Lorenz dominates ȳ.

To analyze this case, it is useful to define the k-power of a network. A k-power gk of a
connected network g is the network with the same vertex set as g, with gkij = 1 if and only
if the distance between i and j in g is at most k (see, for example, Gross and Yellen, 2003).
A set of players is a k-coalition in a connected network g if and only if it is a 1-coalition in
the k-power gk of g. Hence, an allocation is k-stable in g if and only if it is stable in gk.

For k > 1, we do not have results such as Theorem 4.1 and Corollary 4.2, showing that
there is a unique extremal distribution for bipartite networks and providing a characterization
of how the degree of inequality depends on the network structure. However, the effect of
increasing k for given network is straightforward: A group of players that forms a k-coalition
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(a) (b)

(c) (d)

Figure 6.1: (a) The network s of Example 6.2. (b) The 2-power s2 of s. (c) The network s̃
of Example 6.2. (b) The 2-power s̃2 of s̃. In both (a) and (b), the vertices in a maximum
independent set are marked with an open circle (◦).

in a network g is a k′-coalition in g for k′ > k. The following result states that the degree of
inequality that can be sustained in a network weakly decreases when we increase k:

Proposition 6.1 For any network g and k, k′ such that k′ > k, if x̄′, x̄ are extremal dis-
tributions in g for k and k′, respectively, then x̄′ = x̄, x̄′ Lorenz dominates x̄, or x̄ and x̄′

cannot be compared with respect to Lorenz dominance.

This states that if we weakly increase the set of possible coalitions by increasing k,
the extremal distribution cannot become more unequal. However, it allows for extremal
distributions to be noncomparable for different values of k. The reason we cannot rule this
out is twofold. First, there may be multiple extremal distributions for some values of k.
Second, even if all extremal distributions are unique, the restricted core may change in a
nontrivial and unexpected way (cf. Kalai et al., 1978). We do not, however, have an example
where the extremal distributions under different values of k are noncomparable.

How does the degree of inequality that can be sustained in a network depend on the
network structure in this more general setting? Not surprisingly, a direct extension of Corol-
lary 4.2 does not hold, as the following example illustrates: ranking networks in terms of the
cardinality of their maximum independent sets does not provide a ranking in terms of the
inequality they can sustain.

Example 6.2 Suppose f(n) = n2 and k = 2. Consider the networks s and s̃ in Figure 6.1(a)
and (c), respectively. The 2-extremal distributions of s and s̃ are the extremal distributions
of s2 and s̃2, respectively. It can be easily verified that for both networks there is a unique
extremal distribution. While for both networks, the cardinality of the maximum independent
set of the 2-powers is equal to 2 (see Figure 6.1(b) and (d), respectively), the unique 2-
extremal distribution (1, 1, 3, 5, 15) for s Lorenz dominates the unique 2-extremal distribution
(1, 1, 3, 3, 17) for s̃. /
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(a) (b)

(c) (d)

Figure 6.2: (a) The star network gstar of Example 6.3. (b) The 2-power g2
star of gstar. (c)

The network gline of Example 6.3. (d) The 2-power g2
line of s̃. In (b) and (d) the vertices in

a maximum independent set are marked with an open circle (◦)

Interestingly, while the degree of inequality that can be sustained in a network weakly de-
creases for any network if k increases (Proposition 6.1), this decrease occurs at very different
rates for different networks, as the following example shows.

Example 6.3 Consider the star network gstar and the line network gline depicted in Fig-
ure 6.2(a) and (c), respectively, and suppose f(n) = n2. When k = 1, Theorem 4.1 shows
that there is a unique extremal distribution; by Corollary 4.2, the unique extremal distri-
bution x̄1

line for the line Lorenz dominates the unique extremal distribution x̄1
star for the

star.
However, when k = 2, the situation is reversed. In the case of the star, all players can now

form deviating coalitions, while for the line, the two players at the end of the star can still
not coordinate a joint deviation. This is most easily seen by considering the 1-coalitions in
the 2-powers of the line and the star, shown in Figure 6.2(b) and (d), respectively. This has
implications for the degree of inequality that can be sustained. Also for k = 2, the extremal
distributions for the line and star are unique; however, the unique extremal distribution x̄2

star

for the star now Lorenz dominates the unique extremal distribution for the line x̄2
star. /

Intuitively, one might think that the diameter or the characteristic path length of a net-
work determines the rate at which inequality decreases when k increases. The diameter is the
maximum distance between any two players in a connected network, while the characteristic
path length is the average distance between any two players. Indeed, in Example 6.3, the
line network both has a smaller diameter and a smaller characteristic path length than the
star network. The increase in k from k = 1 to k = 2 has a larger impact on the set of feasible
coalitions in the star network than in the line, because the star network directly becomes
fully connected. However, this intuition is incorrect, as the following example shows.

Example 6.4 Again, assume f(n) = n2, and take k = 2. Consider the networks t, t′ and t′′

in Figure 6.3(a), (c), and (e), respectively. The diameter of t is 3, the diameter of t′ is 4, and

14



(a) (b)

(c) (d)

(e) (f)

Figure 6.3: (a) The network t of Example 6.4. (b) The 2-power of t. (c) The network t′ of
Example 6.4. (d) The 2-power of t′. (e) The network t′′ of Example 6.4. (f) The 2-power of
t′′.

the diameter of t′′ is 5. The ordering in terms of the characteristic path lengths is the same: t
has a characteristic path length of 1.87, t′ has a characteristic path length of 2.07, and t′′ has
a characteristic path length of 2.33. The 2-powers of t, t′ and t′′ are shown in Figure 6.3(b),
(d) and (f), respectively. Then, the unique 2-extremal distribution for t is (1,1,3,5,7,19).
For t′, the unique 2-extremal distribution is (1,1,1,3,5,25), and for t′′ it is (1,1,3,3,5,23).
That is, for k = 2, the unique k-extremal distributions for t and t′′ Lorenz dominate the
unique extremal distribution for t′: the degree of inequality that can be sustained changes
nonmonotonically with the diameter and the characteristic path length. /

Hence the manner in which the degree of inequality that can be sustained in a network
depends on its structure remains an open question in this more general setting. While it
may be possible to show that there exists a unique extremal distribution in this case, we
conjecture that there is no network property that will give a complete ranking of networks
in terms of the inequality they can sustain when deviations by coalitions of size larger than
two are allowed.

7 Conclusions

In this paper, we have studied how the degree of inequality that can be sustained on a
network depends on its structure. The starting point of our analysis is the intuitive idea that
players can only jointly deviate if they form a clique in the network. Our main result gives
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a complete ordering of the class of bipartite networks in terms of the degree of inequality
they can sustain. The key network property is the cardinality of the maximum independent
sets. Specifically, we have shown that for each bipartite network, there exists a unique
payoff distribution which is more unequal than all other distributions (in terms of Lorenz
dominance), called the extremal distribution. We then showed that the unique extremal
distribution of a bipartite network Lorenz dominates that of another bipartite network if
and only if the cardinality of its maximum independent set is smaller than that of the
second network.

We also extended our framework to allow for deviations of players that are within dis-
tance k of each other in the network, and provided some examples to show how the degree
of inequality changes when k is varied, depending on the network structure. These examples
show that inequality in payoffs does not vary monotonically with inequality in the distribu-
tion of players’ degree, betweenness, or closeness. Global properties of the network matter
in determining local outcomes.

There are two obstacles to providing a complete characterization of the relation between
inequality and network structure in more general networks or for the case k > 1. First, the
question of whether or not the set of extremal distributions is a singleton remains open in
the general case. And second, as we have illustrated with several examples, even when one
compares two networks with a unique extremal distribution, it is not clear which network
properties determine the level of inequality that can be sustained. For instance, it is not the
case that the cardinality of a network’s maximum independent set is the sole determinant
of payoff inequality, as in the case of bipartite networks and neighbor deviations.

When one considers general networks or allows players to coordinate over larger distances
in the network, the extremal distributions seem to depend on the interaction of different
global properties of the network. In the more general setting, the level of inequality that can
be sustained will not just depend on the possible pairs that can jointly deviate, as for bipartite
networks, but also on deviation opportunities for larger cliques. These considerations suggest
that it may not be possible to obtain a complete ordering of networks in terms of the
extremal inequality they sustain, as the full network structure comes into play in determining
inequality. Nevertheless, some progress may be made using concepts and techniques from the
literature on cores of restricted games (Bilbao, 2000). The relationship between inequality
and network structure is an economically interesting one, and this seems to be a promising
area for future research.
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Appendix A Proof of Theorem 4.1

We first derive some preliminary results. Lemma A.1 shows that the set of vertices of
any network can be partitioned into a maximum independent set and a set of vertices that
are connected to at least one vertex in the maximum independent set.

Lemma A.1 Consider a network g with at least two vertices, and let A be a maximum
independent set in g. Define

B := {j ∈ N | ∃i ∈ A such that gij = 1}

to be the set of vertices that have at least one neighbor in A. Then the sets A and B form a
partition of the vertex set N .

Proof. First we show that A ∩ B = ∅. Suppose that there is a vertex i ∈ A ∩ B. As i ∈ A
and since A is an independent set, there is no j ∈ A such that gij = 1. However, we also
have i ∈ B. By the definition of B, there exists m ∈ A such that gim = 1, a contradiction.

We now establish that N = A ∪ B. Suppose there exists i ∈ N that does not belong
to A ∪ B. Then, by the definition of B, there exists no j ∈ A such that gij = 1. But then
A ∪ {i} is an independent set, contradicting that A is a maximum independent set. �

Lemma A.2 is a technical result on bipartite networks, which allows us to derive Corol-
lary A.3. Corollary A.3 states that for bipartite networks, there exists an injective mapping
from vertices not belonging to a maximum independent set to the vertices in the maximum
independent set, in such a way that the vertices that are matched in this way are neighbors
in the network.

Before we can derive these results, we need some more definitions. The endpoints of
an edge {i, j} are the vertices i and j. A vertex is incident to an edge if it is one of the
endpoints of that edge. A vertex without any neighbors is called an isolated vertex. An edge
cover of a network with no isolated vertices is a set of edges L such that every vertex of the
network is incident to some edge of L. A minimum edge cover of a network without isolated
vertices is an edge cover of the network such that there is no edge cover with strictly smaller
cardinality, see Figure A.1. Note that while a network can have multiple (minimum) edge
covers, the cardinality of a minimum edge cover is well defined. A subgraph of a network
(N, g) is a network (N ′, g′) such that

(i) the vertex set of (N ′g′) is a subset of that of (N, g), that is, N ′ ⊆ N ;

(ii) the edge set of (N ′, g′) is a subset of (N, g), that is, g′ij = 1 implies gij = 1 for all
vertices i and j.

An induced subgraph is a subgraph obtained by deleting a set of vertices. A component of a
network (N, g) is a maximal connected subgraph, that is, a subgraph (N ′g′) that is connected
and is not contained in another connected subgraph of (N, g). Given a graph (N, g), the
subgraph induced by the set non-isolated vertices is referred to as the core subgraph of
(N, g).6 Finally, a star is a tree consisting of one vertex adjacent to all other vertices. We
refer to this vertex as the center of the star.

6Of course, if a network does not have isolated vertices, the core subgraph is just the network itself.
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(a) (b)

Figure A.1: Two bipartite networks; in each network, a minimum edge cover is indicated
with bold lines, and vertices belonging to one of the maximum independent sets are marked
by white circles (◦). Note that while in the network in (a) the minimum edge cover and
the maximum independent set are unique, there two maximum independent sets and two
minimum edge covers for the network in (b).

Lemma A.2 Let (M,h) be a bipartite network, and let (M ′, h′) be an induced subgraph of
(M,h). For any maximum independent set of the core subgraph (N, g) of (M ′, h′), there
exists a minimum edge cover L = {{i1, j1}, . . . , {im, jm}} of (N, g) such that

{i1, . . . , im} = A, {j1, . . . , jm} = N \ A,

and there exists no jm, jk, j` 6= jk such that im = ik.

Proof. First note that every induced subgraph of a bipartite network is again a bipartite
network (that is, the class of bipartite networks is hereditary). Therefore, we can prove the
statement in the lemma by proving that for any bipartite network (N, g) and any maximum
independent set A of the core subgraph of (N, g), there exists a minimum edge cover L =
{{i1, j1}, . . . , {im, jm}} of the core subgraph with the desired properties (cf. West, 2001,
Remark 5.3.20). Without loss of generality, we can restrict attention to a bipartite network
(N, g) without isolated vertices. As before, we fix the vertex set N and denote the network
(N, g) by g.

Let A be a maximum independent set in g. We will construct a minimum edge cover
L = {{i1, j1}, . . . , {im, jm}} with the desired properties. First note that for any minimum
edge cover L′ of g, for any vertex i belonging to A, there exists an edge e in L′ such that
i is an endpoint of e, as otherwise L′ would not cover all vertices. Moreover, as A is an
independent set, there is no edge in L′ with two vertices from A as its endpoints. Hence,
without loss of generality, we can take L = {{i1, j1}, . . . , {im, jm}}, with

{i1, . . . , im} ⊇ A.

By the Kőnig-Rado edge covering theorem (e.g. Schrijver, 2003, p. 317), the cardinality of
a maximum independent set is equal to the cardinality of a minimum edge cover, so that

{i1, . . . , im} = A.

Since {i1, . . . , im} = A, for the vertices of N \ A to be covered by L, we need

{j1, . . . , jm} ⊇ N \ A.
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As A is an independent set, we have

{j1, . . . , jm} = N \ A.

Finally, suppose that there exist distinct jml, jk such that im = ik =: i. First note that
for any minimum edge cover Λ the following holds. If both endpoints of an edge e belong
to edges in Λ other than e, then e 6∈ Λ, because otherwise Λ \ {e} would also be an edge
cover of the network, contradicting that Λ is a minimum edge cover. Hence, each component
formed by edges of L has at most one vertex with more than one neighbor and is a star. By
assumption, jm and jk belong to the same component in L; the center of this component is
i. Since each vertex in A is associated with at least 1 edge in L, this means that |L| > |A|,
which cannot hold by the Kőnig-Rado edge covering theorem. �

Remark 1 In Lemma A.2, we show that for each maximum independent set in the core
subgraph of an induced subgraph of a bipartite network, there exists a minimum edge cover
such that each vertex i in the core subgraph not belonging to the maximum independent
set is matched to a vertex j in the maximum independent set to which it is connected in
the network, and there is no other vertex i′ in the core subgraph that is matched to j. Note
that vertices not belonging to the maximum independent set will typically be connected to
multiple vertices in the maximum independent set, see e.g. the network in Figure A.1(a). /

Corollary A.3 Let (M,h) be a bipartite network, and let (M ′, h′) be an induced subgraph of
(M,h). For any maximum independent set A of (M ′, h′), there exists an injective mapping
π from M ′ \ A to A such that h′iπ(i) = 1 for all i ∈M ′ \ A.

Proof. Denote the set of isolated vertices in (M ′, h′) by B. By Lemma A.2, there exists
a minimum edge cover L = {{i1, j1}, . . . , {im, jm}} for the core subgraph (N, g) of (M ′, h′)
such that

{i1, . . . , im} = A \B, {j1, . . . , jm} = M ′ \ (A ∪B),

and there exists no jm, jk, jm 6= jk such that im = ik. Moreover, B ⊆ A. Hence, the mapping
π : {j1, . . . , jm} → {i1, . . . , im} ∪B defined by

π(jt) = it

for t = 1, . . . ,m satisfies the desired properties. �

Finally, Lemma A.4 establishes that the allocation x∗ (Equation 4.1) is stable for a
bipartite network.

Lemma A.4 Consider a bipartite network g with at least two vertices. Let A be a maximum
independent set in g, and let ` be an arbitrary player in N \ A. Then, the allocation x∗ is
stable.

Proof. To show that the allocation x is stable, we need to establish the following:

(i) The total value
∑

i∈N xi allocated to the players does not exceed f(n).
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(ii) Each player gets at least f(1), that is, xi ≥ f(1) for each i ∈ N .

(iii) Each pair of neighbors gets at least f(2), that is, for each i, j ∈ N such that gij = 1,
xi + xj ≥ f(2).

It is easy to see that (i) is satisfied by definition:∑
i∈N

x∗i = f(n).

To show (ii) and (iii), first note that by the strict convexity of f ,

f(2)− f(1) > f(1). (A.1)

Hence, each player i 6= ` gets at least f(1). By (A.1) and Lemma A.1, each pair of neighbors
i, j ∈ N \ {`} gets at least f(2)− f(1) + f(1) = f(2).

Hence, it remains to show that x` ≥ f(2)− f(1). First note that∑
j 6=`

xj = (n− |A|)(f(2)− f(1))− (f(2)− f(1)).

Hence, it suffices to show that

(n− |A|)(f(2)− f(1)) ≤ f(n).

By Corollary A.3, there exists an injective mapping from N \A to A, so that n− |A| ≤ n/2.
Moreover, f(2)− f(1) ≤ f(2). We thus need to show that

f(2)

2
≤ f(n)

n
.

This follows if d
dx

(f(x)/x) ≥ 0 for all x ≥ 0. First consider the case x = 0. Using L’Hôpital’s
rule, we have

lim
x↓0

d

dx

(
f(x)

x

)
= lim

x↓0

1

x2

(
x df
dx
− f(x)

)
= lim

x↓0

1

2x

(
df
dx

+ xd
2f
dx2 − df

dx

)
=

1

2

(
d2f

dx2

)
> 0.

For x > 0, d
dx

(f(x)
x

)
≥ 0 if and only if x df

dx
−f(x) ≥ 0. As f(0) = 0, we can rewrite this latter

condition as
d

dx

(
f(x)

x

)
≥ f(x)− f(0)

x− 0
,

which holds by the convexity of f . �
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We are now ready to prove Theorem 4.1. Consider a bipartite network (N, g). As before,
we fix N and denote the network by g. When |N | = 1, it is easy to see that the set
of feasible and stable allocations is the singleton {x∗}, so that trivially x̄∗ is the unique
extremal distribution.

Hence, consider the case |N | ≥ 2. Let A be a maximum independent set of A, and for
each t, define

St :=
∑
i=1

x̄∗

to be the sum of the t smallest assignments under x̄∗, and note that

S∗t =


t f(1) if t ≤ |A|;
|A| f(1) + (t− |A|) (f(2)− f(1)) if |A| < t ≤ n− 1;
f(n) if t = n.

(A.2)

By Lemma A.4, x∗ is stable. It remains to show that for any distribution ȳ on g that is
stable and feasible, either ȳ = x̄∗ or ȳ Lorenz dominates x̄∗. Suppose not. Then there exists
t such that

S∗t > St,

where we have defined St :=
∑t

i=1 ȳi to be the sum of the t smallest assignments under ȳ.
Let Ct be any subset of vertices of cardinality t such that∑

i∈Ct

yi = St,

and let At ⊆ Ct be a maximum independent set in the subgraph induced by Ct. Clearly,
|At| ≤ |A|.

By Lemma A.1, the set Ct can be partitioned into At and the set Bt that have at least
one neighbor in At. By Corollary A.3, there is an injective mapping π from Bt to At such
that for each i ∈ Bt, {i, π(i)} is an edge in the subgraph induced by Ct. Define

Ut := {i ∈ At | i = π(j) for some j ∈ Bt}

to be the set of players in At that are matched with a player in Bt by the mapping π.
In a bipartite network, only singleton coalitions or coalitions consisting of pairs of neigh-

bors can form. Hence, by stability of ȳ, each individual player needs to be assigned at least
f(1) under ȳ. By the strict convexity of f , it holds that 2f(1) < f(2). Hence, under a stable
allocation, two neighboring players cannot both be assigned f(1).
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Combining these results gives

St =
∑
i∈Ct

yi

=
∑
i∈Bt

(yi + yπ(i) +
∑

i∈At\Ut

yi

≥
∑
i∈Bt

f(2) +
∑

i∈At\Ut

f(1)

=
(
t− |At|

)
f(2) +

(
|At| − (t− |At|)

)
f(1)

= t (f(2)− f(1)) + |At|
(
2f(1)− f(2)

)
≥ t (f(2)− f(1)) + |A|

(
2f(1)− f(2)

)
, (A.3)

where the last inequality follows from |At| ≤ |A| and 2f(1)−f(2) < 0 (by strict convexity of
f). We need to consider three cases. Firstly, if t ≤ |A|, then S∗t = t f(1). Since by stability,
yi ≥ f(1) for all i, it follows that S∗t ≤ St. Secondly, suppose |A| < t ≤ n − 1. Then it
follows from (A.2) and (A.3) that

S∗t = t (f(2)− f(1)) + |A| (2f(1)− f(2) ≤ St.

Finally, if t = n, then S∗t = St = f(n). Hence, for all t, S∗t ≤ St, a contradiction. �
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Bramoullé, Y. and R. Kranton (2007). Public goods in networks. Journal of Economic
Theory 135, 478 – 494.

Brass, D. J. (1984). Being in the right place: A structural analysis of individual influence in
an organization. Administrative Science Quarterly 29, 518–539.

Burt, R. (2005). Brokerage and Closure: An Introduction to Social Capital. Oxford: Oxford
University Press.
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