638,544 research outputs found
Decarbonizing development: three steps to a zero-carbon future
This report lays out three steps for a smooth transition to a zero-carbon future and provides data, examples and policy advice to help countries makes the shift.
Overview
Getting to zero net emissions and stabilizing climate change starts with planning for the long-term future and not stopping at short-term goals. It means getting prices right as part of a broad policy package that can trigger changes in both investments and behaviors, and it requires smoothing the transition for those most affected.
A new World Bank report walks policymakers through those three steps with data, examples and policy advice to help put countries on a path to decarbonizing their development in a smooth and orderly way.
The solutions exist, and they are affordable – if governments take action today, the report says
On the Theory of Superfluidity in Two Dimensions
The superfluid phase transition of the general vortex gas, in which the
circulations may be any non-zero integer, is studied. When the net circulation
of the system is not zero the absence of a superfluid phase is shown. When the
net circulation of the vortices vanishes, the presence of off-diagonal long
range order is demonstrated and the existence of an order parameter is
proposed. The transition temperature for the general vortex gas is shown to be
the Kosterlitz---Thouless temperature. An upper bound for the average vortex
number density is established for the general vortex gas and an exact
expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24
(1991) 502
Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation
We show that gauge invariant quantum link models, Abelian and non-Abelian,
can be exactly described in terms of tensor networks states. Quantum link
models represent an ideal bridge between high-energy to cold atom physics, as
they can be used in cold-atoms in optical lattices to study lattice gauge
theories. In this framework, we characterize the phase diagram of a (1+1)-d
quantum link version of the Schwinger model in an external classical background
electric field: the quantum phase transition from a charge and parity ordered
phase with non-zero electric flux to a disordered one with a net zero electric
flux configuration is described by the Ising universality class.Comment: 9 pages, 9 figures. Published versio
Novel type of phase transition in a system of self-driven particles
A simple model with a novel type of dynamics is introduced in order to
investigate the emergence of self-ordered motion in systems of particles with
biologically motivated interaction. In our model particles are driven with a
constant absolute velocity and at each time step assume the average direction
of motion of the particles in their neighborhood with some random perturbation
() added. We present numerical evidence that this model results in a
kinetic phase transition from no transport (zero average velocity, ) to finite net transport through spontaneous symmetry breaking of the
rotational symmetry. The transition is continuous since is
found to scale as with
Phase transition of the nucleon-antinucleon plasma at different ratios
We investigate phase transitions for the Walecka model at very high
temperatures. As is well known, depending on the parametrization of this model
and for the particular case of a zero chemical potential (), a first
order phase transition is possible \cite{theis}. We investigate this model for
the case in which . It turns out that, in this situation, phases
with different values of antinucleon-nucleon ratios and net baryon densities
may coexist. We present the temperature versus antinucleon-nucleon ratio as
well as the temperature versus the net baryon density for the coexistence
region. The temperature versus chemical potential phase diagram is also
presented.Comment: 5 pages, 8 figure
Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC
We discuss the relevance of higher order moments of net baryon number
fluctuations for the analysis of freeze-out and critical conditions in heavy
ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we
discuss the generic structure of these higher moments at vanishing baryon
chemical potential and apply chiral model calculations to explore their
properties at non-zero baryon chemical potential. We show that the ratios of
the sixth to second and eighth to second order moments of the net baryon number
fluctuations change rapidly in the transition region of the QCD phase diagram.
Already at vanishing baryon chemical potential they deviate considerably from
the predictions of the hadron resonance gas model which reproduce the second to
fourth order moments of the net proton number fluctuations at RHIC. We point
out that the sixth order moments of baryon number and electric charge
fluctuations remain negative at the chiral transition temperature. Thus, they
offer the possibility to probe the proximity of the thermal freeze-out to the
crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ
Separation of strangeness from antistrangeness in the phase transition from quark to hadron matter: Possible formation of strange quark matter in heavy-ion collisions
We present a mechanism for the separation of strangeness from antistrangeness in the deconfinement transition. For a net strangeness of zero in the total system, the population of s quarks is greatly enriched in the quark-gluon plasma, while the s¯ quarks drift into the hadronic phase. This separation could result in ‘‘strangelet’’ formation, i.e., metastable blobs of strange-quark matter, which could serve as a unique signature for quark-gluon plasma formation in heavy-ion collisions. PACS: 25.70.Np, 12.38.M
- …
