638,544 research outputs found

    Decarbonizing development: three steps to a zero-carbon future

    Get PDF
    This report lays out three steps for a smooth transition to a zero-carbon future and provides data, examples and policy advice to help countries makes the shift. Overview Getting to zero net emissions and stabilizing climate change starts with planning for the long-term future and not stopping at short-term goals. It means getting prices right as part of a broad policy package that can trigger changes in both investments and behaviors, and it requires smoothing the transition for those most affected. A new World Bank report walks policymakers through those three steps with data, examples and policy advice to help put countries on a path to decarbonizing their development in a smooth and orderly way. The solutions exist, and they are affordable – if governments take action today, the report says

    On the Theory of Superfluidity in Two Dimensions

    Full text link
    The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, the presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for the general vortex gas is shown to be the Kosterlitz---Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz---Thouless ensemble.Comment: 22 pages, one figure, written in plain TeX, published in J. Phys. A24 (1991) 502

    Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation

    Full text link
    We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy to cold atom physics, as they can be used in cold-atoms in optical lattices to study lattice gauge theories. In this framework, we characterize the phase diagram of a (1+1)-d quantum link version of the Schwinger model in an external classical background electric field: the quantum phase transition from a charge and parity ordered phase with non-zero electric flux to a disordered one with a net zero electric flux configuration is described by the Ising universality class.Comment: 9 pages, 9 figures. Published versio

    Novel type of phase transition in a system of self-driven particles

    Full text link
    A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with some random perturbation (η\eta) added. We present numerical evidence that this model results in a kinetic phase transition from no transport (zero average velocity, va=0| {\bf v}_a | =0) to finite net transport through spontaneous symmetry breaking of the rotational symmetry. The transition is continuous since va| {\bf v}_a | is found to scale as (ηcη)β(\eta_c-\eta)^\beta with β0.45\beta\simeq 0.45

    Phase transition of the nucleon-antinucleon plasma at different ratios

    Get PDF
    We investigate phase transitions for the Walecka model at very high temperatures. As is well known, depending on the parametrization of this model and for the particular case of a zero chemical potential (μ \mu ), a first order phase transition is possible \cite{theis}. We investigate this model for the case in which μ0 \mu \ne 0 . It turns out that, in this situation, phases with different values of antinucleon-nucleon ratios and net baryon densities may coexist. We present the temperature versus antinucleon-nucleon ratio as well as the temperature versus the net baryon density for the coexistence region. The temperature versus chemical potential phase diagram is also presented.Comment: 5 pages, 8 figure

    Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC

    Full text link
    We discuss the relevance of higher order moments of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher moments at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order moments of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second to fourth order moments of the net proton number fluctuations at RHIC. We point out that the sixth order moments of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the thermal freeze-out to the crossover line.Comment: 24 pages, 12 EPS files, revised version, to appear in EPJ

    Separation of strangeness from antistrangeness in the phase transition from quark to hadron matter: Possible formation of strange quark matter in heavy-ion collisions

    Get PDF
    We present a mechanism for the separation of strangeness from antistrangeness in the deconfinement transition. For a net strangeness of zero in the total system, the population of s quarks is greatly enriched in the quark-gluon plasma, while the s¯ quarks drift into the hadronic phase. This separation could result in ‘‘strangelet’’ formation, i.e., metastable blobs of strange-quark matter, which could serve as a unique signature for quark-gluon plasma formation in heavy-ion collisions. PACS: 25.70.Np, 12.38.M
    corecore