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Phase transition of the nucleon-antinucleon plasma at different ratios
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We investigate phase transitions for the Walecka model at very high temperatures. As is well known, depending
on the parametrization of this model and for the particular case of a zero chemical potential (µ), a first-order
phase transition is possible [J. Theis, G. Graebner, G. Buchwald, J. A. Maruhn, W. Greiner, H. Stocker, and
J. Polonyi, Phys. Rev. D 28, 2286 (1983)]. We investigate this model for the case in which µ �= 0. It turns out that,
in this situation, phases with different values of antinucleon-nucleon ratios and net baryon densities may coexist.
We present the temperature versus antinucleon-nucleon ratio as well as the temperature versus the net baryon
density for the coexistence region. The temperature versus chemical potential phase diagram is also presented.
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Finite nuclei and nuclear matter properties have been
reasonably well described by the Walecka model [2]. This
renormalizable model employs nucleons and mesons (σ and
ω) as the degrees of freedom. The sources for the fields are
the scalar (ρs) and vector (ρ) densities associated with the
Lorentz scalar (S) and vector (V ) interactions. It is well known
that this model, after the fitting of the experimental infinite
nuclear matter binding energy at the saturation density, gives
for this system a high bulk incompressibility, as well as a high
spin-orbit splitting energy, when applied for finite nuclei. To
overcome this problem, nonlinear relativistic hadronic models
which include cubic and quartic scalar mesonic self-couplings
have been proposed [3]. The preliminary success of this kind of
nonlinear Walecka model, estimulated the proposal of different
parametrizations to better describe nuclear matter properties
[4]. Still aiming at refining its predictions for nuclear matter
and neutron stars properties, new kinds of models including
scalar(vector) self-coupling interactions added to usual nonlin-
ear Walecka models [3,4] have been constructed [5]. Effective
hadronic models with density-dependent coupling constants
have also been proposed [6].

In general, (non-)linear Walecka models models [2–6]
have been investigated under extreme density and temperature
regimes. Most of such studies focus on the hadronic quark-
gluon plasma phase transition, which is not the aim of
our present work. Here, our purpose is to extend the very
interesting work of Theis et al. [1]. In their study [1],
the Walecka model was investigated in the extreme high-
temperature regime in which the chemical potential (µ) is
zero. This leads to a situation in which the net baryon density
(ρ) also vanishes. In this case, the number of nucleon and
antinucleon are the same. This study showed that, in this
nucleon-antinucleon plasma at very high temperature, a phase
transition exists.

In this work, we will investigate the Walecka model under
an extreme temperature regime, but allowing the number of
antiparticles and particles to be different in the two phases
it can lead to. The question we pose here is whether by
allowing different ratios of nucleons-antinucleons a phase
transition scenario is still present, as in the particular case
ρ = 0, still in the so-called “no-sea” approximation. That is,

we consider explicitly only the valence Fermi and Dirac sea
states. Let us here remark that such an approximation, as
investigated carefully by the Ohio group [7], becomes good
at low energies, where the contributions of the Dirac sea can
be renormalized in effective coupling constants. Of course, a
rigorous way to perform our investigation would be to include
vacuum polarization effects in the Walecka model for high
excitation energies, where the antiparticles play an essential
role. This treatment, however, is beyond the scope of this work
and we perform an exploratory investigation even though the
validity of the “no-sea” approximation in this regime may not
be granted.

Nowadays, high-energy experiments reveal evidence of
nuclear systems with very small baryonic density in the study
of particle yields measured in central Au-Au collision at RHIC.
Different experimental analysis (STAR, PHENIX, PHOBOS,
BRAHMS) furnish the antiproton-proton ratio p̄/p ≈ 0.65 for
a temperature of 174 MeV and a chemical baryonic potential
of 46 MeV estimated from thermal models to fit antiparticle-
particle ratios [8]. High energy Pb-Pb collisions show that
this ratio reach values around 0.9 [9]. If relativistic hadronic
models are to be used in the description of the multiplicity
observed today in ultrarelativistic heavy-ion collisions [10,11],
the behavior of these models at high temperature regimes may
be of importance.

The thermodynamics of the Walecka model may be given,
for finite temperature, in terms of the energy density and
pressure functionals,

E = C2
ω

2M2
ρ2

b + 2C2
σ

2M2
ρ2

s + γ

2π2

∫
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ρ̄ = γ

2π2

∫
k2dk n̄k, (5)

ρs = M∗ γ

2π2

∫
k2dk

E∗(k)
(nk + n̄k). (6)

In the expressions above, γ , is the degeneracy factor (γ = 4
for nuclear matter and γ = 2 for neutron matter), nk and
n̄k stand for the Fermi-Dirac distribution for baryons and
antibaryons respectively, with arguments (E∗∓ν)/T · E∗(k)
is given by E∗(k) = (k2 + M∗2)1/2, whereas an effective
chemical potential, which preserves the number of baryons and
antibaryons in the ensemble, is defined by ν = µ − V, V =
C2

ωρb/M
2, where µ is the thermodynamic chemical potential.

The solution for the equation of state is obtained explicitly
through the minimization of E relative to the scalar field, or
equivalently to m∗ = M∗/M ,

f

(
M∗

M

)
= 1 − M∗

M
− C2

s

M3
ρs = 0. (7)

This equation, known as the gap equation, has to be solved
self-consistently with Eqs. (1) and (2) and provides the basis
for obtaining all thermodynamic quantities in the mean-field
approach we are using.

Usually, the constants C2
σ and C2

ω are determined in favor of
the experimental nuclear matter binding energy (16 MeV) at
the saturation density (ρb = ρo = 0.15 fm−3) at T = 0. At
finite temperature, this model predicts a critical liquid-gas
behavior as a van der Waals equation of state. Its critical
temperature is around 18 MeV [2]. For this temperature, the
antinucleon-nucleon ratio, given by R = ρ̄/ρ is negligible.
Only when the temperature gets higher, the antinucleon density
starts to take significant values.

In a very interesting work [1], the Walecka model was
studied in the extreme situation in which R = 1. In this
case, ρb = 0 and ν = µ = 0. This study showed that, in this
nucleon-antinucleon plasma at very high temperature, a phase
transition exists. It is also remarkable to note that the order of
the phase transition itself becomes dependent on the C2

σ versus
C2

ω space parameter. By small changes on these parameters
(which means to change by a few percent the nuclear matter
binding energy and the saturation density), the phase transition
changes from first to second order. If we take the values
of C2

σ = 359.35 and C2
ω = 275.12, fitting the infinite nuclear

matter binding energy as 16 MeV at a density of 0.15 fm−3,
the phase transition is of first order. The findings of Ref. [1]
may be summarized in Fig. 1.

In Fig. 1 we see that the nucleon effective mass decreases
abruptly at T ≈ 184 MeV. Because all other thermodynamic
quantities are dependent on m∗, this effect also manifests itself
in energy density, pressure, and specific heat, calculated as
the temperature first derivative of the energy density. The
fast increase of the entropy is a clear signal of a first-order
phase transition. Because the baryonic density is kept constant
ρb = 0, the order parameter should be the entropy. It is a
very curious constrained system, interpreted as a nucleon-
antinucleon plasma [1].

Here, following [1], we start to study the Walecka model
in different constrained cases. The main question is to
understand the behavior of some thermodynamical quantities

180 185 190

T (MeV)

0

0.25

0.5

0.75

1

Effective Mass
Entropy
Energy
Pressure
Specific Heat

FIG. 1. The effective mass, entropy, energy density, pressure, and
the specific heat for R = 1 as a function of the temperature. The mass
is in units of the nucleon mass and the entropy, energy, and pressure
are in Stefan-Boltzmann units.

when the ratio R = ρ̄/ρ varies. Now, all quantities will have
contribution from the baryonic density, contrary to Fig. 1 where
ρb = 0.

Let us now remark that we have fixed numerically the ratio
within a precision of one part in a thousand. It means that
the set of Eqs. (1)–(7) is solved self-consistently with R −
R/1000 � R � R + R/1000. In Fig. 2 we present M∗/M as a
function of the temperature for different values of R.

For the same values of R investigated in Fig. 2, the entropy
behavior as a function of the temperature is shown in Fig. 3.

Both the nucleon effective mass and the entropy follow
the same abrupt decreasing (increasing) behavior one sees for
the particular case R = 1. From these figures we see that, as
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FIG. 2. The effective mass as a function of the tempera-
ture for several values of R. From the left to the right: R =
0.1, 0.3, 0.5, 0.7, 0.9.
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FIG. 3. The entropy, in Stefan-Boltzmann units, as a function of
the temperature for several values of R. The values of R are the same
as those in Fig. 2.

the ratio ρ̄/ρ decreases, the temperature in which an abrupt
behavior arises also decreases but keeps the same character. In
principle, there is an important difference between the system
described by Fig. 1 and those of Figs. 2 and 3. In the first, R = 1
and ρb = 0 along the temperature variation. In the second, the
ratios are kept constant while ρb varies. Visually, Figs. 2–3
suggest phase coexistence at some temperature range.
According to the Gibbs criteria, if one has phases 1 and
2, a phase coexistence arises when p1 = p2, µ1 = µ2, and
T1 = T2. The critical temperature is achieved when, above that,
no more phase coexistence is possible. For the case R = 1, a
phase coexistence exists at T = 183.25 MeV and µ = 0. It
means that, if the temperature increases or decreases from this
value, the phase coexistence disappears as we can see in Fig. 4,
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FIG. 4. Thermodynamical potential, in units of the Stefan-
Boltzmann pressure, as a function of the nucleon effective mass,
for temperatures around the critical temperature in the case where
µ = 0 (R = 1).

where the minima of the thermodynamical potential have
different values for the same temperature.

This kind of investigation was performed, for example,
by Asakawa and Yazaki [12] when working with the Nambu
and Jona-Lasinio model at finite temperature, where a phase
transition is also present. Following their procedure, we can
verify whether the system exhibits phase coexistence.

Surprisingly, despite the signals of phase coexistence shown
by Figs. 2–3, we did not find phase coexistence for a single
value of R when R �= 1. In this case, when the system was
in thermal (T1 = T2) and mechanical (p1 = p2) equilibrium,
chemical equilibrium (µ1 = µ2) was not found. However,
along the apparent phase coexistence region signalized in
Figs. 2–3 by three different values of M∗/M and entropy
for the same temperature, we found a stable phase (global
minimum of the thermodynamical potential). It indicates the
presence of stable phases up to the start of the backbending
of the curves and new stable phases by any increase of
the temperature, but with a dramatic decrease (increase) in
the effective mass (entropy). Such a phase transition without
phase coexistence is rare in physics. Therefore, we decided to
leave the fixed ratio scenario to analyze what happens if the
system becomes free of such constraint.

Next, we proceed to investigate the phase coexistence in
the Walecka model still at high temperature but without any
fixed R constraint. In Fig. 5 we display the thermodynamical
potential density −p and f (M∗/M) given by Eq. (2) and
Eq. (7), respectively.

In the curves presented, the Gibbs criteria T1 = T2, p1 =
p2, and µ1 = µ2 are clearly satisfied. As we continue to
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FIG. 5. The same as in the previous figure, but showing the phase
coexistence for temperatures between T = 183.25 MeV (upper curve
in top panel) and T = 182.90 MeV (lower curve in botton panel). The
values of µ are those that make the two minima to be have the same
value for each temperature. Note that now R is not constrained and
has a different value for each temperature and chemical potential.
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FIG. 6. Temperature versus baryon chemical potential for the
coexistence phase region.

decrease the temperature, the Gibbs criteria can be fulfilled
because the chemical potential µ increases. The curves for
the thermodynamical potential for T < 182.9 MeV (not
shown) becomes flatter as the temperature decreases. This
happens until T ≈ 180 MeV and µ ≈ 274 MeV. Therefore, the
coexistence region for the Walecka model, with the coupling
constants given previously and without any R constraint, is
180.1 � T � 183.25 MeV with 0 � µ � 274 MeV. The phase
diagram T × µ is given in Fig. 6.

Now, we have the values of M∗/M that allow the phase
coexistence for the phase diagram of Fig. 6. With these, we
can extract the net baryon densities ρ as a function of T that
allows phase coexistence. The results are presented in Fig. 7.

Following the same procedure, in Fig. 8 we show the
different ratios R for which the system affords coexistence.
It is interesting to observe that no coexistence exists if one of
the ratio is not greater than 1/2. As we can see, only in the
particular case R = 1, which corresponds to ρb = 0 µ, there
is a phase coexistence allowing only one fixed ratio.

In short, we start by studying the Walecka model at high
temperature regime constraining the antinucleon-nucleon ratio
(R) to be constant but not equal to 1 as has been done
by Theis et al. [1]. We have seen that the visual signals
of phase transition for the effective nucleon mass (M∗) and
entropy (S) versus temperature (T ) for the cases R �= 1 are
typically the same of those obtained in the case R = 1. By this
we mean an abrupt decrease (increase) of both (M∗ and S)
for T > 180 MeV. Surprisingly, however, we could not find
for R �= 1, contrary to the R = 1 case, a phase coexistence
signature by using the Gibbs criteria. Phase transition without
phase coexistence is a rare occurrence in physics. As far as
we know, they are theoretically predicted for the anomalous
two-dimension Kosterlitz-Thouless phase transition [13], as
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FIG. 7. Temperature versus net baryon density for the phase
coexistence region.

an example. Because we could not find a clear signature for
phase coexistence at fixed R �= 1 we have investigated phase
coexistence for nonconstrained values of R. Our study shows
that the only phase coexistence regime for a fixed R occurs
at R = 1 or, what is the same, µ = 0. In the the Walecka
model parametrization we have used, coexistence phases
occur approximately in the interval 180 � T � 183.25 MeV
and different values of R at each phase are needed.

If one uses hadronic models [10,11] to study high-
energy heavy-ion collisions, the models face a low-density
and high-temperature regime. In the chemical freeze-out,
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FIG. 8. Antinucleon-nucleon ratio (R) versus temperature for the
phase coexistence region.
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antinucleon-nucleon are produced at ratios that depend on the
center-of-mass energy [14]. Although the Walecka model is
too simple to deal with, it may anticipate roughly what can
happen with more realistic hadronic models. Theis et al. [1]
analyzed (µ = 0) that, depending on its parametrization, the
Walecka model shows first- or second-order phase transition.
The same happens with different hadronic models [15].
Therefore, it is to be expected that models (with µ = 0) that
present first-order phase transition would follow a behavior
similar to the Walecka model (Figs. 6–8) regarding phase

coexistence regions. Therefore, depending on the values of
T and µ used to fit the freeze-out data, the chosen hadronic
model may be dealing with hadronic phase coexistence region,
as depicted in Figs. 6–8.
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