1,807,770 research outputs found

    Primary Care Safety Net

    Get PDF
    Four community-based pilot projects for leveraging public-private partnerships to expand health care coverage among low-wage workers

    Sanders Keeping Pace With Clinton in New Hampshire 8/4/15

    Get PDF
    Hillary Clinton remains in a statistical tie with Vermont senator Bernie Sanders in New Hampshire. Clinton and Sanders enjoy similar net favorability ratings among Democratic primary voters. Election: NH Primary 201

    Thermal States in Conformal QFT. II

    Get PDF
    We continue the analysis of the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on the real line. In the first part we have proved the uniqueness of KMS state on every completely rational net. In this second part, we exhibit several (non-rational) conformal nets which admit continuously many primary KMS states. We give a complete classification of the KMS states on the U(1)-current net and on the Virasoro net Vir_1 with the central charge c=1, whilst for the Virasoro net Vir_c with c>1 we exhibit a (possibly incomplete) list of continuously many primary KMS states. To this end, we provide a variation of the Araki-Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is an inclusion of split nets A in B and A is the fixed point of B w.r.t. a compact gauge group, then any locally normal, primary KMS state on A extends to a locally normal, primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case, we show that the free Fermi model admits a unique KMS state.Comment: 36 pages, no figure. Dedicated to Rudolf Haag on the occasion of his 90th birthday. The final version is available under Open Access. This paper contains corrections to the Araki-Haag-Kaster-Takesaki theorem (and to a proof of the same theorem in the book by Bratteli-Robinson). v3: a reference correcte

    Forest Net Primary Production Resistance Across a Gradient of Moderate Disturbance

    Get PDF
    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C uptake and loss. Moderate disturbances that kill or defoliate only a subset of canopy trees such as insect defoliation, drought, and age-related senescence are increasing in extent and frequency; yet, little is known about the effect of moderate disturbance on forest production and the mechanisms sustaining or supporting the recovery of the C cycle across a range of moderate disturbance severities. We used a broad plot-scale gradient of upper canopy tree mortality within a large manipulation of forest disturbance to: 1) quantify how aboveground wood net primary production (ANPPw) responds to a range of moderate disturbance severities and; 2) identify the primary mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw was highly resistant to moderate disturbance, with production levels sustained following the senescence of 9 to \u3e 60 % of the upper canopy tree basal area. As upper canopy gap fraction increased with rising disturbance severity, greater light availability to the subcanopy enhanced leaf-level C uptake and the growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses. As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased at high levels of disturbance severity and leaf area loss. These findings provide a mechanistic explanation for sustained ANPPw across the disturbance gradient, in which the physiological and growth enhancement of undisturbed vegetation was proportional to the level of disturbance severity. Our results have important ecological and management implications, showing that moderate disturbances may minimally alter ecosystem functions such as C storage

    Ensuring Access to Care in Medicaid Under Health Reform

    Get PDF
    Outlines discussions about increasing primary care provider participation; specialist and mental health access; safety-net capacity; managed care plans, team-based care, and integrated service delivery; and coordinating Medicaid and exchange coverage

    Senescent trees stabilize aboveground wood net primary production immediately after disturbance

    Get PDF
    In the United States, forests sequester 17% of national carbon (C) emissions annually (UGCRP, 2018), however shifting forest disturbances threaten the stability of this essential C sink. Unlike the high severity, stand-replacing disturbances that were widespread a century ago, today’s eastern temperate forests experience frequent low-to-moderate severity disturbances from invasive pests and pathogens with mixed effects on net primary production (NPP). Carbon cycling stability after disturbance has been reported, however, the mechanisms underlying immediate NPP stability or decline are not well understood. Through weekly measurements of production in a landscape scale experiment, we show that the sustained growth of senescent trees in the first year after disturbance stabilized aboveground wood net primary production (ANPPw) in an eastern temperate forest. We found no evidence for an immediate compensatory growth response from healthy trees that we hypothesized, but instead, aboveground accumulation of C and continued growth by senescent trees. Among disturbance severities (0, 45, 65, 85% gross leaf area loss) and two disturbance types concentrated in the lower and upper canopy, no difference in annual ANPPw relative to a control was observed. Further, we found early, but limited evidence that early successional plant functional types (PFT) contribute more to annual ANPPw than late successional PFTs at high severity disturbances (\u3e65%). Our high-frequency ANPPw observations provide novel insights into the immediate response of a large C pool to disturbance, revealing initial mechanisms of stability useful as benchmarks for ecosystem models. We conclude that C cycling stability immediately following disturbance is largely dependent on the continued aboveground growth of senescent trees

    The Wealth of the Baby Boom Cohorts After the Collapse of the Housing Bubble

    Get PDF
    This report builds upon previous CEPR projections to more accurately describe the current wealth prospects for the baby boom cohorts aged 45 to 54 and 55 to 64. The severity of the housing market meltdown, coupled with the recent collapse of the stock market, has had a severe negative impact on the wealth of these cohorts. Using data from the 2004 Survey of Consumer Finance and the November 2008 Case-Shiller 20 City Price Index, the authors create three possible scenarios for baby boomer wealth and find these households will enter retirement with little wealth beyond Social Security. For each cohort in 2004 and 2009, the paper analyzes net worth, financial assets, equity in real estate, percent of households in each cohort who will need cash to close on their primary residence, net worth of homeowners, net worth of non-homeowners, and the percent of homeowners who would need cash to close on their primary residence

    Potential net primary productivity in South America: application of a global model

    Get PDF
    We use a mechanistically based ecosystem simulation model to describe and analyze the spatial and temporal patterns of terrestrial net primary productivity (NPP) in South America. The Terrestrial Ecosystem Model (TEM) is designed to predict major carbon and nitrogen fluxes and pool sizes in terrestrial ecosystems at continental to global scales. Information from intensively studies field sites is used in combination with continental—scale information on climate, soils, and vegetation to estimate NPP in each of 5888 non—wetland, 0.5° latitude °0.5° longitude grid cells in South America, at monthly time steps. Preliminary analyses are presented for the scenario of natural vegetation throughout the continent, as a prelude to evaluating human impacts on terrestrial NPP. The potential annual NPP of South America is estimated to be 12.5 Pg/yr of carbon (26.3 Pg/yr of organic matter) in a non—wetland area of 17.0 ° 106 km2. More than 50% of this production occurs in the tropical and subtropical evergreen forest region. Six independent model runs, each based on an independently derived set of model parameters, generated mean annual NPP estimates for the tropical evergreen forest region ranging from 900 to 1510 g°m—2°yr—1 of carbon, with an overall mean of 1170 g°m—2°yr—1. Coefficients of variation in estimated annual NPP averaged 20% for any specific location in the evergreen forests, which is probably within the confidence limits of extant NPP measurements. Predicted rates of mean annual NPP in other types of vegetation ranged from 95 g°m—2°yr—1 in arid shrublands to 930 g°m@?yr—1 in savannas, and were within the ranges measured in empirical studies. The spatial distribution of predicted NPP was directly compared with estimates made using the Miami mode of Lieth (1975). Overall, TEM predictions were °10% lower than those of the Miami model, but the two models agreed closely on the spatial patterns of NPP in south America. Unlike previous models, however, TEM estimates NPP monthly, allowing for the evaluation of seasonal phenomena. This is an important step toward integration of ecosystem models with remotely sensed information, global climate models, and atmospheric transport models, all of which are evaluated at comparable spatial and temporal scales. Seasonal patterns of NPP in South America are correlated with moisture availability in most vegetation types, but are strongly influenced by seasonal differences in cloudiness in the tropical evergreen forests. On an annual basis, moisture availability was the factor that was correlated most strongly with annual NPP in South America, but differences were again observed among vegetation types. These results allow for the investigation and analysis of climatic controls over NPP at continental scales, within and among vegetation types, and within years. Further model validation is needed. Nevertheless, the ability to investigate NPP—environment interactions with a high spatial and temporal resolution at continental scales should prove useful if not essential for rigorous analysis of the potential effects of global climate changes on terrestrial ecosystems

    The net profitability of airline alliances using referential dollars

    Get PDF
    This study revises a previous research in which we analysed the net profitability of airline alliances but did not control for the impact of inflation on such profitability. Using the same methodology, 15 international airlines as subjects and their net financial results for a period of 11 years as primary research variables, we now compared the performance of airlines before and after joining their respective alliances using referential dollars (i.e., constant dollars with 2010 as base year) instead of nominal dollars. The results showed a similar deterioration in short-term net profits after joining an alliance as the previous study did, and a similar behaviour of statistics tests. Thus, the conclusion then achieved still stand after this revision
    corecore