5 research outputs found

    Artificially Synthesising Data for Audio Classification and Segmentation to Improve Speech and Music Detection in Radio Broadcast

    Get PDF
    No embargo required.Segmenting audio into homogeneous sections such as music and speech helps us understand the content of audio. It is useful as a pre-processing step to index, store, and modify audio recordings, radio broadcasts and TV programmes. Deep learning models for segmentation are generally trained on copyrighted material, which cannot be shared. Annotating these datasets is time-consuming and expensive and therefore, it significantly slows down research progress. In this study, we present a novel procedure that artificially synthesises data that resembles radio signals. We replicate the workflow of a radio DJ in mixing audio and investigate parameters like fade curves and audio ducking. We trained a Convolutional Recurrent Neural Network (CRNN) on this synthesised data and outperformed state-of-the-art algorithms for music-speech detection. This paper demonstrates the data synthesis procedure as a highly effective technique to generate large training sets for deep neural networks

    You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection

    Get PDF
    Audio segmentation and sound event detection are crucial topics in machine listening that aim to detect acoustic classes and their respective boundaries. It is useful for audio-content analysis, speech recognition, audio-indexing, and music information retrieval. In recent years, most research articles adopt segmentation-by-classification. This technique divides audio into small frames and individually performs classification on these frames. In this paper, we present a novel approach called You Only Hear Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in Computer Vision. We convert the detection of acoustic boundaries into a regression problem instead of frame-based classification. This is done by having separate output neurons to detect the presence of an audio class and predict its start and end points. The relative improvement for F-measure of YOHO, compared to the state-of-the-art Convolutional Recurrent Neural Network, ranged from 1% to 6% across multiple datasets for audio segmentation and sound event detection. As the output of YOHO is more end-to-end and has fewer neurons to predict, the speed of inference is at least 6 times faster than segmentation-by-classification. In addition, as this approach predicts acoustic boundaries directly, the post-processing and smoothing is about 7 times faster.</jats:p

    Deep Learning for Audio Segmentation and Intelligent Remixing

    Get PDF
    Audio segmentation divides an audio signal into homogenous sections such as music and speech. It is useful as a preprocessing step to index, store, and modify audio recordings, radio broadcasts and TV programmes. Machine learning models for audio segmentation are generally trained on copyrighted material, which cannot be shared across research groups. Furthermore, annotating these datasets is a time-consuming and expensive task. In this thesis, we present a novel approach that artificially synthesises data that resembles radio signals. We replicate the workflow of a radio DJ in mixing audio and investigate parameters like fade curves and audio ducking. Using this approach, we obtained state-of-the-art performance for music-speech detection on in-house and public datasets. After demonstrating the efficacy of training set synthesis, we investigate how audio ducking of background music impacts the precision and recall of the machine learning algorithm. Interestingly, we observed that the minimum level of audio ducking preferred by the machine learning algorithm was similar to that of human listeners. Furthermore, we observe that our proposed synthesis technique outperforms real-world data in some cases and serves as a promising alternative. This project also proposes a novel deep learning system called You Only Hear Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in Computer Vision. We convert the detection of acoustic boundaries into a regression problem instead of frame-based classification. The relative improvement for F-measure of YOHO, compared to the state-of-the-art Convolutional Recurrent Neural Network, ranged from 1% to 6% across multiple datasets. As YOHO predicts acoustic boundaries directly, the speed of inference and post-processing steps are 6 times faster than frame-based classification. Furthermore, we investigate domain generalisation methods such as transfer learning and adversarial training. We demonstrated that these methods helped our algorithm perform better in unseen domains. In addition to audio segmentation, another objective of this project is to explore real-time radio remixing. This is a step towards building a customised radio and consequently, integrating it with the schedule of the listener. The system would remix music from the user’s personal playlist and play snippets of diary reminders at appropriate transition points. The intelligent remixing is governed by the underlying audio segmentation and other deep learning methods. We also explore how individuals can communicate with intelligent mixing systems through non-technical language. We demonstrated that word embeddings help in understanding representations of semantic descriptors

    Investigating the Effects of Training Set Synthesis for Audio Segmentation of Radio Broadcast

    Get PDF
    Special Issue "Machine Learning Applied to Music/Audio Signal Processing"Music and speech detection provides us valuable information regarding the nature of content in broadcast audio. It helps detect acoustic regions that contain speech, voice over music, only music, or silence. In recent years, there have been developments in machine learning algorithms to accomplish this task. However, broadcast audio is generally well-mixed and copyrighted, which makes it challenging to share across research groups. In this study, we address the challenges encountered in automatically synthesising data that resembles a radio broadcast. Firstly, we compare state-of-the-art neural network architectures such as CNN, GRU, LSTM, TCN, and CRNN. Later, we investigate how audio ducking of background music impacts the precision and recall of the machine learning algorithm. Thirdly, we examine how the quantity of synthetic training data impacts the results. Finally, we evaluate the effectiveness of synthesised, real-world, and combined approaches for training models, to understand if the synthetic data presents any additional value. Amongst the network architectures, CRNN was the best performing network. Results also show that the minimum level of audio ducking preferred by the machine learning algorithm was similar to that of human listeners. After testing our model on in-house and public datasets, we observe that our proposed synthesis technique outperforms real-world data in some cases and serves as a promising alternative

    Sound Channel Video Indexing

    No full text
    International audienceWe present in this paper preliminary results using speaker recognition and speech recognition techniques, designed at LIP6, to index audio data of video movies. The assumption that only one person is speaking at the same time is made. In a first approach, we work on dialogue unsupervised indexing using speaker recognition techniques. For this purpose, we develop Silence/Noise/Music/Speech detection algorithms in order to cut audio data in segments that we hope to be homogeneous in terms of speaker appartenance. In a second approach, we develop a supervised audio data indexing method knowing the movie script
    corecore