93 research outputs found

    Some remarks on multiplicity codes

    Full text link
    Multiplicity codes are algebraic error-correcting codes generalizing classical polynomial evaluation codes, and are based on evaluating polynomials and their derivatives. This small augmentation confers upon them better local decoding, list-decoding and local list-decoding algorithms than their classical counterparts. We survey what is known about these codes, present some variations and improvements, and finally list some interesting open problems.Comment: 21 pages in Discrete Geometry and Algebraic Combinatorics, AMS Contemporary Mathematics Series, 201

    Information Sets of Multiplicity Codes

    Get PDF
    We here provide a method for systematic encoding of the Multiplicity codes introduced by Kopparty, Saraf and Yekhanin in 2011. The construction is built on an idea of Kop-party. We properly define information sets for these codes and give detailed proofs of the validity of Kopparty's construction, that use generating functions. We also give a complexity estimate of the associated encoding algorithm.Comment: International Symposium on Information Theory, Jun 2015, Hong-Kong, China. IEE

    Fast systematic encoding of multiplicity codes

    Get PDF
    We present quasi-linear time systematic encoding algorithms for multiplicity codes. The algorithms have their origins in the fast multivariate interpolation and evaluation algorithms of van der Hoeven and Schost (2013), which we generalise to address certain Hermite-type interpolation and evaluation problems. By providing fast encoding algorithms for multiplicity codes, we remove an obstruction on the road to the practical application of the private information retrieval protocol of Augot, Levy-dit-Vehel and Shikfa (2014)

    Lifted Multiplicity Codes and the Disjoint Repair Group Property

    Get PDF
    Lifted Reed Solomon Codes (Guo, Kopparty, Sudan 2013) were introduced in the context of locally correctable and testable codes. They are multivariate polynomials whose restriction to any line is a codeword of a Reed-Solomon code. We consider a generalization of their construction, which we call lifted multiplicity codes. These are multivariate polynomial codes whose restriction to any line is a codeword of a multiplicity code (Kopparty, Saraf, Yekhanin 2014). We show that lifted multiplicity codes have a better trade-off between redundancy and a notion of locality called the t-disjoint-repair-group property than previously known constructions. More precisely, we show that, for t <=sqrt{N}, lifted multiplicity codes with length N and redundancy O(t^{0.585} sqrt{N}) have the property that any symbol of a codeword can be reconstructed in t different ways, each using a disjoint subset of the other coordinates. This gives the best known trade-off for this problem for any super-constant t < sqrt{N}. We also give an alternative analysis of lifted Reed Solomon codes using dual codes, which may be of independent interest

    A Storage-Efficient and Robust Private Information Retrieval Scheme Allowing Few Servers

    Get PDF
    Since the concept of locally decodable codes was introduced by Katz and Trevisan in 2000, it is well-known that information the-oretically secure private information retrieval schemes can be built using locally decodable codes. In this paper, we construct a Byzantine ro-bust PIR scheme using the multiplicity codes introduced by Kopparty et al. Our main contributions are on the one hand to avoid full replica-tion of the database on each server; this significantly reduces the global redundancy. On the other hand, to have a much lower locality in the PIR context than in the LDC context. This shows that there exists two different notions: LDC-locality and PIR-locality. This is made possible by exploiting geometric properties of multiplicity codes

    Unbalanced Expanders from Multiplicity Codes

    Get PDF
    In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless condenser based on Parvaresh-Vardy codes. This lossless condenser is a basic building block in many constructions, and, in particular, is behind the state of the art extractor constructions. We give an alternative construction that is based on Multiplicity codes. While the bottom-line result is similar to the GUV result, the analysis is very different. In GUV (and Parvaresh-Vardy codes) the polynomial ring is closed to a finite field, and every polynomial is associated with related elements in the finite field. In our construction a polynomial from the polynomial ring is associated with its iterated derivatives. Our analysis boils down to solving a differential equation over a finite field, and uses previous techniques, introduced by Kopparty (in [Swastik Kopparty, 2015]) for the list-decoding setting. We also observe that these (and more general) questions were studied in differential algebra, and we use the terminology and result developed there. We believe these techniques have the potential of getting better constructions and solving the current bottlenecks in the area

    Improved Local Testing for Multiplicity Codes

    Get PDF
    Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in ?_p^m. Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [Karliner et al., 2022] showed that the plane test, which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees. In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM_p(m, d, s) over prime fields with arbitrary d are locally testable by an appropriate k-flat test, which tests the degree of the codeword on a random k-dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [Karliner et al., 2022] in the case of planes. Our analysis relies on a generalization of the technique of canonincal monomials introduced in [Haramaty et al., 2013]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes
    • …
    corecore