759,863 research outputs found

    Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dots

    Full text link
    The multiplication rates of hot carriers in CdSe quantum dots are quantified using an atomistic pseudopotential approach and first order perturbation theory. Both excited holes and electrons are considered, and electron-hole Coulomb interactions are accounted for. We find that holes have much higher multiplication rates than electrons with the same excess energy due to the larger density of final states (positive trions). When electron-hole pairs are generated by photon absorption, however, the net carrier multiplication rate is dominated by photogenerated electrons, because they have on average much higher excess energy. We also find, contrary to earlier studies, that the effective Coulomb coupling governing carrier multiplication is energy dependent. We show that smaller dots result in a decrease in the carrier multiplication rate for a given absolute photon energy. However, if the photon energy is scaled by the volume dependent optical gap, then smaller dots exhibit an enhancement in carrier multiplication for a given relative energy.Comment: 19 pages, 6 figure

    Impact-ionization and noise characteristics of thin III-V avalanche photodiodes

    Get PDF
    It is, by now, well known that McIntyre\u27s localized carrier-multiplication theory cannot explain the suppression of excess noise factor observed in avalanche photodiodes (APDs) that make use of thin multiplication regions. We demonstrate that a carrier multiplication model that incorporates the effects of dead space, as developed earlier by Hayat et al. provides excellent agreement with the impact-ionization and noise characteristics of thin InP, In/sub 0.52/Al/sub 0.48/As, GaAs, and Al/sub 0.2/Ga/sub 0.8/As APDs, with multiplication regions of different widths. We outline a general technique that facilitates the calculation of ionization coefficients for carriers that have traveled a distance exceeding the dead space (enabled carriers), directly from experimental excess-noise-factor data. These coefficients depend on the electric field in exponential fashion and are independent of multiplication width, as expected on physical grounds. The procedure for obtaining the ionization coefficients is used in conjunction with the dead-space-multiplication theory (DSMT) to predict excess noise factor versus mean-gain curves that are in excellent accord with experimental data for thin III-V APDs, for all multiplication-region widths

    Group-theoretic algorithms for matrix multiplication

    Get PDF
    We further develop the group-theoretic approach to fast matrix multiplication introduced by Cohn and Umans, and for the first time use it to derive algorithms asymptotically faster than the standard algorithm. We describe several families of wreath product groups that achieve matrix multiplication exponent less than 3, the asymptotically fastest of which achieves exponent 2.41. We present two conjectures regarding specific improvements, one combinatorial and the other algebraic. Either one would imply that the exponent of matrix multiplication is 2.Comment: 10 page
    corecore