578,910 research outputs found
Higher accuracy protein Multiple Sequence Alignment by Stochastic Algorithm
Multiple Sequence Alignment gives insight into evolutionary, structural and functional relationships among the proteins. Here, a novel Protein Alignment by Stochastic Algorithm (PASA) is developed. Evolutionary operators of a genetic algorithm, namely, mutation and selection are utilized in combining the output of two most important sequence alignment programs and then developing an optimized new algorithm. Efficiency of protein alignments is evaluated in terms of Total Column score which is equal to the number of correctly aligned columns between a test alignment and the reference alignment divided by the total number of columns in the reference alignment. The PASA optimizer achieves, on an average, significant better alignment over the well known individual bioinformatics tools. This PASA is statistically the most accurate protein alignment method today. It can have potential applications in drug discovery processes in the biotechnology industry
Structure-Guided Recombination Creates an Artificial Family of Cytochromes P450
Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ~3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2
Bootstrapping Lexical Choice via Multiple-Sequence Alignment
An important component of any generation system is the mapping dictionary, a
lexicon of elementary semantic expressions and corresponding natural language
realizations. Typically, labor-intensive knowledge-based methods are used to
construct the dictionary. We instead propose to acquire it automatically via a
novel multiple-pass algorithm employing multiple-sequence alignment, a
technique commonly used in bioinformatics. Crucially, our method leverages
latent information contained in multi-parallel corpora -- datasets that supply
several verbalizations of the corresponding semantics rather than just one.
We used our techniques to generate natural language versions of
computer-generated mathematical proofs, with good results on both a
per-component and overall-output basis. For example, in evaluations involving a
dozen human judges, our system produced output whose readability and
faithfulness to the semantic input rivaled that of a traditional generation
system.Comment: 8 pages; to appear in the proceedings of EMNLP-200
Multiple sequence alignment based on set covers
We introduce a new heuristic for the multiple alignment of a set of
sequences. The heuristic is based on a set cover of the residue alphabet of the
sequences, and also on the determination of a significant set of blocks
comprising subsequences of the sequences to be aligned. These blocks are
obtained with the aid of a new data structure, called a suffix-set tree, which
is constructed from the input sequences with the guidance of the
residue-alphabet set cover and generalizes the well-known suffix tree of the
sequence set. We provide performance results on selected BAliBASE amino-acid
sequences and compare them with those yielded by some prominent approaches
- …
