2,938 research outputs found

    Numerical investigations of discrete scale invariance in fractals and multifractal measures

    Full text link
    Fractals and multifractals and their associated scaling laws provide a quantification of the complexity of a variety of scale invariant complex systems. Here, we focus on lattice multifractals which exhibit complex exponents associated with observable log-periodicity. We perform detailed numerical analyses of lattice multifractals and explain the origin of three different scaling regions found in the moments. A novel numerical approach is proposed to extract the log-frequencies. In the non-lattice case, there is no visible log-periodicity, {\em{i.e.}}, no preferred scaling ratio since the set of complex exponents spread irregularly within the complex plane. A non-lattice multifractal can be approximated by a sequence of lattice multifractals so that the sets of complex exponents of the lattice sequence converge to the set of complex exponents of the non-lattice one. An algorithm for the construction of the lattice sequence is proposed explicitly.Comment: 31 Elsart pages including 12 eps figure

    Random walk on Sierpinski-type multifractals

    Full text link
    A method is established which allows the calculation of the walk dimension for Sierpinski-type multifractals. The multifractal scaling behaviour of the average time needed to cover a distance in the mentionned multifractals is shown. For the average-time-multifractal we calculate the Renyi dimensions and allpy the f(alpha)-formalism.Comment: 9 pages, Postscrip

    High values of disorder-generated multifractals and logarithmically correlated processes

    Full text link
    In the introductory section of the article we give a brief account of recent insights into statistics of high and extreme values of disorder-generated multifractals following a recent work by the first author with P. Le Doussal and A. Rosso (FLR) employing a close relation between multifractality and logarithmically correlated random fields. We then substantiate some aspects of the FLR approach analytically for multifractal eigenvectors in the Ruijsenaars-Schneider ensemble (RSE) of random matrices introduced by E. Bogomolny and the second author by providing an ab initio calculation that reveals hidden logarithmic correlations at the background of the disorder-generated multifractality. In the rest we investigate numerically a few representative models of that class, including the study of the highest component of multifractal eigenvectors in the Ruijsenaars-Schneider ensemble

    Convolution of multifractals and the local magnetization in a random field Ising chain

    Full text link
    The local magnetization in the one-dimensional random-field Ising model is essentially the sum of two effective fields with multifractal probability measure. The probability measure of the local magnetization is thus the convolution of two multifractals. In this paper we prove relations between the multifractal properties of two measures and the multifractal properties of their convolution. The pointwise dimension at the boundary of the support of the convolution is the sum of the pointwise dimensions at the boundary of the support of the convoluted measures and the generalized box dimensions of the convolution are bounded from above by the sum of the generalized box dimensions of the convoluted measures. The generalized box dimensions of the convolution of Cantor sets with weights can be calculated analytically for certain parameter ranges and illustrate effects we also encounter in the case of the measure of the local magnetization. Returning to the study of this measure we apply the general inequalities and present numerical approximations of the D_q-spectrum. For the first time we are able to obtain results on multifractal properties of a physical quantity in the one-dimensional random-field Ising model which in principle could be measured experimentally. The numerically generated probability densities for the local magnetization show impressively the gradual transition from a monomodal to a bimodal distribution for growing random field strength h.Comment: An error in figure 1 was corrected, small additions were made to the introduction and the conclusions, some typos were corrected, 24 pages, LaTeX2e, 9 figure

    Multifractals Competing with Solitons on Fibonacci Optical Lattice

    Full text link
    We study the stationary states for the nonlinear Schr\"odinger equation on the Fibonacci lattice which is expected to be realized by Bose-Einstein condensates loaded into an optical lattice. When the model does not have a nonlinear term, the wavefunctions and the spectrum are known to show fractal structures. Such wavefunctions are called critical. We present a phase diagram of the energy spectrum for varying the nonlinearity. It consists of three portions, a forbidden region, the spectrum of critical states, and the spectrum of stationary solitons. We show that the energy spectrum of critical states remains intact irrespective of the nonlinearity in the sea of a large number of stationary solitons.Comment: 5 pages, 4 figures, major revision, references adde

    Modeling fractal structure of city-size distributions using correlation function

    Get PDF
    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Based on the idea from general fractals and scaling, this paper proposes a dual competition hypothesis of city develop to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is Pareto effect indicating city number increase (external complexity), and the other Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.Comment: 18 pages, 3 figures, 3 table
    • …
    corecore