2,679 research outputs found

    Development of a versatile laser light scattering instrument

    Get PDF
    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study

    Get PDF
    In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared with measurements made by two other instruments, the Cloud Absorption Radiometer (CAR) and the MODIS airborne simulator (MAS), as well as to plane-parallel radiative transfer simulations. It is found that the AirMISR radiance measurements and albedo estimates compare favorably both with the other instruments and with the radiative transfer simulations. In addition to radiance and albedo, the multiangle AirMISR data can be used to obtain estimates of cloud top height using stereoimaging techniques. Comparison of AirMISR retrieved cloud top height (using the complete MISR-based stereoimaging approach) shows excellent agreement with the measurements from the airborne Cloud Lidar System (CLS) and ground-based millimeterwave cloud radar

    Development of a versatile laser light scattering instrument

    Get PDF
    NASA Lewis Research Center is providing and coordinating the technology for placing a compact Laser Light Scattering (LLS) instrument in a microgravity environment. This will be accomplished by defining and assessing user requirements for microgravity experiments, coordinating needed technological developments, and filling technical gaps. This effort is striving to brassboard and evaluate a miniature multi-angle LLS instrument. The progress of the program is reported

    Calibrating evanescent-wave penetration depths for biological TIRF microscopy

    Full text link
    Roughly half of a cells proteins are located at or near the plasma membrane. In this restricted space the cell senses its environment, signals to its neighbors and ex-changes cargo through exo- and endocytotic mechanisms. Ligands bind to receptors, ions flow across channel pores, and transmitters and metabolites are transported against con-centration gradients. Receptors, ion channels, pumps and transporters are the molecular substrates of these biological processes and they constitute important targets for drug discovery. Total internal reflection fluorescence microscopy suppresses background from cell deeper layers and provides contrast for selectively imaging dynamic processes near the basal membrane of live-cells. The optical sectioning of total internal reflection fluorescence is based on the excitation confinement of the evanescent wave generated at the glass-cell interface. How deep the excitation light actually penetrates the sample is difficult to know, making the quantitative interpretation of total internal reflection fluorescence data problematic. Nevertheless, many applications like super-resolution microscopy, colocalization, fluorescence recovery after photobleaching, near-membrane fluorescence recovery after photobleaching, uncaging or photo-activation-switching, as well as single-particle tracking require the quantitative interpretation of evanescent-wave excited images. Here, we review existing techniques for characterizing evanescent fields and we provide a roadmap for comparing total internal reflection fluorescence data across images, experiments, and laboratories.Comment: 18 text pages, 7 figures and one supplemental figur
    corecore