2,679 research outputs found
Development of a versatile laser light scattering instrument
A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments
Aerosol Data Sources and Their Roles within PARAGON
We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal
Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study
In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared with measurements made by two other instruments, the Cloud Absorption Radiometer (CAR) and the MODIS airborne simulator (MAS), as well as to plane-parallel radiative transfer simulations. It is found that the AirMISR radiance measurements and albedo estimates compare favorably both with the other instruments and with the radiative transfer simulations. In addition to radiance and albedo, the multiangle AirMISR data can be used to obtain estimates of cloud top height using stereoimaging techniques. Comparison of AirMISR retrieved cloud top height (using the complete MISR-based stereoimaging approach) shows excellent agreement with the measurements from the airborne Cloud Lidar System (CLS) and ground-based millimeterwave cloud radar
Development of a versatile laser light scattering instrument
NASA Lewis Research Center is providing and coordinating the technology for placing a compact Laser Light Scattering (LLS) instrument in a microgravity environment. This will be accomplished by defining and assessing user requirements for microgravity experiments, coordinating needed technological developments, and filling technical gaps. This effort is striving to brassboard and evaluate a miniature multi-angle LLS instrument. The progress of the program is reported
Calibrating evanescent-wave penetration depths for biological TIRF microscopy
Roughly half of a cells proteins are located at or near the plasma membrane.
In this restricted space the cell senses its environment, signals to its
neighbors and ex-changes cargo through exo- and endocytotic mechanisms. Ligands
bind to receptors, ions flow across channel pores, and transmitters and
metabolites are transported against con-centration gradients. Receptors, ion
channels, pumps and transporters are the molecular substrates of these
biological processes and they constitute important targets for drug discovery.
Total internal reflection fluorescence microscopy suppresses background from
cell deeper layers and provides contrast for selectively imaging dynamic
processes near the basal membrane of live-cells. The optical sectioning of
total internal reflection fluorescence is based on the excitation confinement
of the evanescent wave generated at the glass-cell interface. How deep the
excitation light actually penetrates the sample is difficult to know, making
the quantitative interpretation of total internal reflection fluorescence data
problematic. Nevertheless, many applications like super-resolution microscopy,
colocalization, fluorescence recovery after photobleaching, near-membrane
fluorescence recovery after photobleaching, uncaging or
photo-activation-switching, as well as single-particle tracking require the
quantitative interpretation of evanescent-wave excited images. Here, we review
existing techniques for characterizing evanescent fields and we provide a
roadmap for comparing total internal reflection fluorescence data across
images, experiments, and laboratories.Comment: 18 text pages, 7 figures and one supplemental figur
- …
