59,301 research outputs found

    Fingerprint verification by fusion of optical and capacitive sensors

    Get PDF
    A few works have been presented so far on information fusion for fingerprint verification. None, however, have explicitly investigated the use of multi-sensor fusion, in other words, the integration of the information provided by multiple devices to capture fingerprint images. In this paper, a multi-sensor fingerprint verification system based on the fusion of optical and capacitive sensors is presented. Reported results show that such a multi-sensor system can perform better than traditional fingerprint matchers based on a single sensor. (C) 2004 Elsevier B.V. All rights reserved

    Oil Spill Detection Analyzing “Sentinel 2“ Satellite Images: A Persian Gulf Case Study

    Get PDF
    Oil spills near exploitation areas and oil loading ports are often related to the ambitions of governments to get more oil market share and the negligence at the time of the loading in large tankers or ships. The present study investigates one oil spill event using multi sensor satellite images in the Al Khafji (between Kuwait and Saudi Arabia) zone. Oil slicks have been characterized with multi sensor satellite images over the Persian Gulf and then analyzed in order to detect and classify oil spills in this zone. In particular this paper discusses oil pollution detection in the Persian Gulf by using multi sensor satellite images data. Oil spill images have been selected by using Sentinel 2 images pinpointing oil spill zones. ENVI software for analysing satellite images and ADIOS (Automated Data Inquiry for Oil Spills) for oil weathering modelling have been used. The obtained results in Al Khafji zone show that the oil spill moves towards the coastline firstly increasing its surface and then decreasing it until reaching the coastline

    Semi-supervised Multi-sensor Classification via Consensus-based Multi-View Maximum Entropy Discrimination

    Full text link
    In this paper, we consider multi-sensor classification when there is a large number of unlabeled samples. The problem is formulated under the multi-view learning framework and a Consensus-based Multi-View Maximum Entropy Discrimination (CMV-MED) algorithm is proposed. By iteratively maximizing the stochastic agreement between multiple classifiers on the unlabeled dataset, the algorithm simultaneously learns multiple high accuracy classifiers. We demonstrate that our proposed method can yield improved performance over previous multi-view learning approaches by comparing performance on three real multi-sensor data sets.Comment: 5 pages, 4 figures, Accepted in 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 15

    Multi-sensor fire detection by fusing visual and non-visual flame features

    Get PDF
    This paper proposes a feature-based multi-sensor fire detector operating on ordinary video and long wave infrared (LWIR) thermal images. The detector automatically extracts hot objects from the thermal images by dynamic background subtraction and histogram-based segmentation. Analogously, moving objects are extracted from the ordinary video by intensity-based dynamic background subtraction. These hot and moving objects are then further analyzed using a set of flame features which focus on the distinctive geometric, temporal and spatial disorder characteristics of flame regions. By combining the probabilities of these fast retrievable visual and thermal features, we are able to detect the fire at an early stage. Experiments with video and LWIR sequences of lire and non-fire real case scenarios show good results in id indicate that multi-sensor fire analysis is very promising

    Uniform Recovery from Subgaussian Multi-Sensor Measurements

    Full text link
    Parallel acquisition systems are employed successfully in a variety of different sensing applications when a single sensor cannot provide enough measurements for a high-quality reconstruction. In this paper, we consider compressed sensing (CS) for parallel acquisition systems when the individual sensors use subgaussian random sampling. Our main results are a series of uniform recovery guarantees which relate the number of measurements required to the basis in which the solution is sparse and certain characteristics of the multi-sensor system, known as sensor profile matrices. In particular, we derive sufficient conditions for optimal recovery, in the sense that the number of measurements required per sensor decreases linearly with the total number of sensors, and demonstrate explicit examples of multi-sensor systems for which this holds. We establish these results by proving the so-called Asymmetric Restricted Isometry Property (ARIP) for the sensing system and use this to derive both nonuniversal and universal recovery guarantees. Compared to existing work, our results not only lead to better stability and robustness estimates but also provide simpler and sharper constants in the measurement conditions. Finally, we show how the problem of CS with block-diagonal sensing matrices can be viewed as a particular case of our multi-sensor framework. Specializing our results to this setting leads to a recovery guarantee that is at least as good as existing results.Comment: 37 pages, 5 figure

    Dependable reconfigurable multi-sensor poles for security

    Get PDF
    Wireless sensor network poles for security monitoring under harsh environments require a very high dependability as they are safety-critical [1]. An example of a multi-sensor pole is shown. Crucial attribute in these systems for security, especially in harsh environment, is a high robustness and guaranteed availability during lifetime. This environment could include molest. In this paper, two approaches are used which are applied simultaneously but are developed in different projects. \u

    Analysis of multi-sensor data, 12 September - 11 December 1968

    Get PDF
    Analysis of multi-sensor data obtained by Earth Resources Aircraft Progra

    Development of subminiature multi-sensor hot-wire probes

    Get PDF
    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes

    Overlapping Coalition Formation for Efficient Data Fusion in Multi-Sensor Networks

    No full text
    This paper develops new algorithms for coalition formation within multi-sensor networks tasked with performing wide-area surveillance. Specifically, we cast this application as an instance of coalition formation, with overlapping coalitions. We show that within this application area sub-additive coalition valuations are typical, and we thus use this structural property of the problem to we derive two novel algorithms (an approximate greedy one that operates in polynomial time and has a calculated bound to the optimum, and an optimal branch-and-bound one) to find the optimal coalition structure in this instance. We empirically evaluate the performance of these algorithms within a generic model of a multi-sensor network performing wide area surveillance. These results show that the polynomial algorithm typically generated solutions much closer the optimal than the theoretical bound, and prove the effectiveness of our pruning procedure
    corecore