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Abstract. This paper proposes a feature-based multi-sensor fire detec-
tor operating on ordinary video and long wave infrared (LWIR) thermal
images. The detector automatically extracts hot objects from the ther-
mal images by dynamic background subtraction and histogram-based
segmentation. Analogously, moving objects are extracted from the ordi-
nary video by intensity-based dynamic background subtraction. These
hot and moving objects are then further analyzed using a set of flame
features which focus on the distinctive geometric, temporal and spatial
disorder characteristics of flame regions. By combining the probabilities
of these fast retrievable visual and thermal features, we are able to detect
the fire at an early stage. Experiments with video and LWIR sequences
of fire and non-fire real case scenarios show good results and indicate
that multi-sensor fire analysis is very promising.

1 Introduction

Recently, research on video analysis for fire detection has become a hot topic in
computer vision. This has resulted in a large amount of vision-based detection
techniques that can be used to detect the fire at an early stage [1]. Based on the
numerous advantages of video-based sensors, e.g. fast detection (no transport
delay), indoor/outdoor detection at a distance, and the ability to provide fire
progress information, it is expected that video fire detection (VFD) will become
a viable alternative or complement for the more traditional fire sensors.

Although it has shown that ordinary video promises good fire detection and
analysis results, we believe that the use of IR cameras in the long wave IR range
(LWIR) can be of added value. Various facts corroborate this idea. First of all,
existing VFD algorithms have inherent limitations, such as the need for sufficient
and specific lighting conditions. Thermal IR imaging sensors image emitted light,
not reflected light, and do not have this limitation, providing a 24 hour, 365 day
capability. Also, the further we go in the infrared spectrum the more the visual



perceptibility decreases and the thermal perceptibility increases. As such, hot
objects like flames will be best visible and less disturbed by other objects in
the LWIR spectral range. Furthermore, due to the variability of shape, motion,
colors, and patterns of smoke and flames, many of the existing VFD approaches
are still vulnerable to false alarms. Since it is possible to integrate IR cameras
into existing closed-circuit television (CCTV) networks, the combination of both
technologies can be used to reduce these false alarms. At last, smoke is almost
transparent in the LWIR wavelength range, and therefore, in contrast to video
cameras or the human eye, a LWIR camera can look through it. As such, LWIR
imaging could also be used to localize the fire through the smoke. On the basis of
all these facts, the use of LWIR in combination with ordinary VFD is considered
to be a win-win. This is also confirmed by our experiments, as the fused detector
performs better than either sensor alone.

The remainder of this paper is organized as follows. Section 2 presents the re-
lated work in non-visible light, with a particular focus on the underlying features
which can be of use in LWIR flame detection. For the related work in visible light
we refer to earlier work of the authors [1]. Based on the analysis of the existing
approaches in visibible and non-visible light and on our experiments, Section
3 proposes the multi-sensor flame detector. Subsequently, Section 4 shows the
experimental results. Section 5 ends this paper with the conclusions.

2 Related Work in Non-Visible Light

Although the trend towards IR-based video analysis is noticeable, the number
of papers about IR-based fire detection in literature is still limited. Neverthe-
less, the results from existing work already seem very promising and ensure the
feasibility of IR video in fire detection.

Owrutsky et al. [2] work in the near infrared spectral range and focus on
an increase in the global luminosity, i.e. the sum of the pixel intensities in the
frame. Although this fairly simple algorithm seems to produce good results, its
limited constraints do raise questions about its applicability in large and open
places with varying backgrounds and a lot of ordinary moving objects. Toreyin
et al. [3] detect flames in infrared by searching for bright-looking moving objects
with rapid time-varying contours. A wavelet domain analysis of the 1D-curve
representation of the contours is used to detect the high frequency nature of
the boundary of a fire region. In addition, the temporal behavior of the region
is analyzed using a Hidden Markov Model. The combination of both temporal
and spatial clues seems more appropriate than the luminosity approach and, ac-
cording to the authors [3], greatly reduces false alarms. A similar combination of
temporal and spatial features is used by Bosch et al. [4]. Hotspots, i.e. candidate
flame regions, are detected by automatic histogram-based image thresholding.
By analyzing the resulting hot objects their intensity, signature, and orientation,
discrimination between flames and other hot objects is made.



Fig. 1. General scheme of multi-sensor flame detector

3 Multi-sensor flame detector

Based on the analysis of our experiments and the related work, this section
proposes the multi-sensor flame detector. As can be seen in Fig. 1, the detector
consists of a video and LWIR moving (hot) object segmentation and a set of
visual and LWIR flame features which analyze these objects. At the end, a
global classifier combines the analysis results and takes a final decision.

3.1 Dynamic background subtraction: moving object detection

Both the video and LWIR segmentation process start with a dynamic background
subtraction, which extracts moving objects by subtracting the LWIR and video
frames with everything in the scene that remains constant over time, i.e. the
estimated background BGn. This estimation is updated dynamically (Eq. 1)
after each segmentation by comparing the pixel values of BGn with the values
of the corresponding pixels in the frame Fn. For the LWIR images the comparison
is based on the temperature increase of flames: if the quantized shifted value of
the pixel [x, y] in Fn is higher than the shifted value of the pixel in BGn, Fn[x, y]
is labeled as foreground FG. Otherwise, Fn[x, y] gets a background label BG.
The shifting is performed by moving down the value of each pixel in BGn to the
nearest ten and by shifting the corresponding pixel in Fn over the same distance.
The quantization is done by rounding off the shifted values of Fn to the nearest
ten. For the ordinary video, a similar approach is used. Fn[x, y] is labeled as FG
if the quantized shifted intensities of the pixel in BGn and Fn differ.

BGn+1[x, y] =

{
αBGn[x, y] + (1− α)Fn[x, y] if Fn[x, y]→ BG

BGn[x, y] if Fn[x, y]→ FG
(1)

where the update parameter α is a time constant that specifies how fast new
information supplants old observations. Here α (=0.95) was chosen close to 1.



Fig. 2. Hot object segmentation by background subtraction and histogram-based dy-
namic thresholding

To avoid unnecessary computational work and to decrease the number of false
alarms caused by noisy objects, a morphological opening, with a 3*3 square
structuring element, is performed after the dynamic background subtraction.
Each of the remaining FG objects in the video images is then further analyzed
using a set of visual flame features. Analogously, LWIR FG objects are analyzed
by a set of LWIR flame features. Before this LWIR analysis starts, a histogram-
based segmentation is used in addition to extract the hottest objects out of the
set of LWIR FG objects. Only these hot FG objects are further analyzed.

3.2 LWIR Hot Object Segmentation

Like in the work of Bosch et al. [4] we extract the hot objects representing possi-
ble flames by separating the highly brightened objects from the less brightened
objects (Fig. 2). This segmentation step uses Otsu’s method [5], which auto-
matically performs histogram shape-based image thresholding, assuming that
the image to be processed contains two classes of objects. Iteratively the opti-
mum threshold separating those two classes is calculated so that their combined
spread, i.e. the intra-class variance (Eq. 2), is minimal.

σ2
w(t) = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) (2)

where weights ωi are the probabilities of the two classes separated by a threshold
t and σ2

i are the variances of these classes.

3.3 Hot object analysis: LWIR flame features

Bounding Box Disorder (BBD): Our experiments (Fig. 3) revealed that the
bounding box BB of flames varies considerably over time in both directions and
that this variation shows a high degree of disorder. As such, the BBD (Eq. 3)
is chosen as a feature to distinguish between flames and other hot objects. It is
related to the number of extremes, i.e., local maxima and minima, in the set of
N BBwidth and BBheight data points. By smoothing these data points, small
differences between consecutive points are filtered out and are not taken into
account in the extrema calculation, which increases the strength of the feature.
Flames, with a high number of extremes, will have a BBD close to 1, while for
more static objects it will be near to 0.



Fig. 3. Bounding box disorder of flames (a) and moving person (b)

BBD =
|extrema(BBwidth)|+ |extrema(BBheight)|

N
(3)

Principal Orientation Disorder (POD): During the experiments, it was
also found that the disorder in principal orientation is remarkably higher for
flames than for more static objects like people. This orientation equals the angle
α between the x-axis and the major axis of the ellipse that has the same second-
moments as the object region. The POD focuses on this orientation disorder
characteristic and is calculated in a similar way as the BBD (Eq. 4).

POD =
|extrema(α)|

N/2
(4)

Again, flames, with a high number of orientation extremes, will have a POD
close to 1, while more static objects their POD will be near to 0.

Histogram Roughness (HR): By inspection of the histograms H of hot ob-
jects, it was observed that histograms of flame regions are very rough (Fig. 4).
Also, it was found that the intensities of these regions range almost over the
whole histogram, while for non-flame objects these intensities are more cen-
tered on some specific intensity bins and have a smaller range. The HR focuses
on these two findings. As Eq. 5 shows, the HR equals the mean range of the
histogram multiplied by the average disorder over all the non-zero bins. This
average disorder is also calculated by extrema analysis and is the indicator of
the histogram roughness over time.

HR =
range(H)

N
∗
|extremabins 6=∅(H)|

N/2
(5)



Fig. 4. Histogram analysis of flames (a) and moving person (b)

3.4 Moving object analysis: visual flame features

The set of visual flame features, to analyze moving objects in ordinary video,
also consists of three features. Two of them, i.e. BBD and POD, are equal to
their LWIR equivalents. The other feature is the spatial flame color disorder,
which focuses on the color characteristics of the object.

Spatial Flame Color Disorder (SFCD): Based on our experiments and the
work of others [6], it is reasonable to assume that the colors of flames belong
to the red-yellow color range. Furthermore, experiments showed that the flame
color does not remain steady, i.e. flames are composed of several varying colors.
The SFCD focuses on both color-related aspects of flames in order to eliminate
non fire-colored objects and ordinary fire-colored objects with a solid flame color.
As is defined in Eq. 6, the SFCD is calculated as the product of the percentage
flame pixels and the spatial disorder in the object region R. The percentage
flame pixels equals the ratio of the number of pixels #Y−R(RH) with a hue
value in the yellow-red range and the total number of pixels #pixels(R). The
spatial disorder equals the ratio of the average range over all sets ΩI([x, y]) of
4-neighboring pixels’ intensities and the overall range of the pixels’ intensities in
the object region. Objects with a SFCD close to 1 will most probably represent
flames, while ordinary moving objects will have a SFCD close to 0.

Ω([x, y]) = {[x, y − 1], [x− 1, y], [x, y], [x+ 1, y], [x, y + 1]}

SFCD =
#Y−R(RH)

#pixels(R)
∗ range(ΩI([x, y]))

range(RI) + ε

(6)

3.5 Global classifier

Each of the proposed visual and LWIR flame features possesses a probability
between 0 and 1, indicating whether the object has the flame characteristic. By
averaging these LWIR and visual flame probabilities (Eq. 7), the probabilities



PLWIR(Flames) and Pvideo(Flames) are retrieved, which indicate wether the
object should be classified as flames in the respective spectral range. The global
classifier combines these two probabilities, using (Eq. 8), into an overall flame
probability P (Flames). The parameter β in this equation is a constant that
specifies how much of PLWIR(Flames) and Pvideo(Flames) must be taken into
account in the overall probability calculation. Depending the circumstances, e.g.
night or day, an appropriate β value can be chosen. At the end, the overall
probability P (Flames), is compared to an alarm threshold tfire. If the flame
probability is high enough, a fire alarm is raised. In our experiments it was
found that a good value for tfire is 0.7.

PLWIR(Flames) =
BBD + POD +HR

3

Pvideo(Flames) =
BBD + POD + SFCD

3

(7)

P (Flames) = β ∗ PLWIR(Flames) + (1− β) ∗ Pvideo(Flames) (8)

4 Experimental results

The proposed multi-sensor flame detector was tested with a Xenics Gobi-384
LWIR camera [7] and a Linksys WVC2300 camera, which works in the 8 - 14
µm spectral range and the visible spectrum respectively. Using the Xenics Xeneth
software we were able to extract appropriate grayscale video images out of the
thermal imaging camera. These images were then further analyzed by our own
LWIR detection algorithm written in Matlab, extended with some add-ons for
extrema detection and histogram analysis. The images from the Linksys camera,
which were already in the appropriate MPEG-4 video format, were analyzed by
the video-based flame detector, also written in Matlab. At the end, the probabil-
ities of both detections were combined, using the global classifier (Eq. 8, β=0.6),
and a final indication about the presence of flames is given.

The video and LWIR images in Fig. 5 are some exemplary frames of the fire
and non-fire realistic video sequences, which were captured to test the proposed
multi-sensor flame detection algorithm. Table 1 summarizes the detection results
for all the tested sequences. As the results in the Table indicate, the proposed
algorithm yields good detection results. For uncontrolled fires, e.g. burning pa-
per, the flame detection rate is higher than 90% and for controlled fires, e.g. a
bunsen burner, it is around 75%. Furthermore, the number of false detections
is very low. By further analyzing the detection results, e.g. by temporal median
filtering, it is expected that this number of false alarms can even be further re-
duced. However, to confirm all these findings a more thorough evaluation and
comparison with other work [2-4] is needed. This will be part of our future work.



Table 1. Performance evaluation of multi-sensor flame detector

Video sequence # fire # detected mean # false flame
(# frames) frames fire frames P (flames) detections detection

rate *

Attic1 (337) 264 259 0.92 6 0.96
Fire → burning paper

Attic2 (2123) 1461 1352 0.84 19 0.91
Fire / Moving people

Attic3 (886) 0 5 0.22 5 -
Moving people

Lab (115) 98 74 0.77 0 0.75
Fire → bunsen burner

Corridor1 (622) 0 0 0.19 0 -
Moving people

Corridor2 (184) 0 3 0.28 3 -
Moving people / Hot object

* detection rate = (# detected fire frames - # false alarms) / # fire frames

Changing the β value in Eq. 8 to 0 or 1, transforms the multi-sensor detec-
tor into a standalone LWIR or video fire detector respectively. Comparisson of
the results for these standalone detectors with the results of our multi-sensor
approach have confirmed our hypothesis that the fused detector performs re-
markably better than either sensor alone.

5 Conclusions

To detect the presence of fire at an early stage, the proposed multi-sensor fire
detector fuses visual and non-visual flame features from moving (hot) objects
in ordinary video and long wave infrared (LWIR) thermal images. Extraction of
the moving objects is based on dynamic background subtraction. Additionally,
LWIR moving objects are further filtered by histogram-based hot object segmen-
tation, such that only the hottest moving objects remain. These hot and moving
objects are then further analyzed using a set of flame features which focus on
the distinctive geometric, temporal and spatial disorder characteristics of flame
regions. By combining the probabilities of the bounding box disorder (BBD),
the principal orientation disorder (POD), and the histogram roughness of hot
moving objects in LWIR, a LWIR flame probability is calculated. Analogously,
the probabilities of the spatial flame color disorder, the BBD, and the POD of
moving objects in ordinary video are combined into a video flame probability.
At the end, both the LWIR and the video flame probability are combined into a
multi-sensor flame probability, which gives an indication about the presence of
flames. If this indication is high enough, a fire alarm is given.



Fig. 5. Test sequences in ordinary video (a,c,e,g) and LWIR (b,d,f,h): Attic2, Lab,
Corridor2, and Attic3.

Experimental results have shown that the proposed multi-sensor flame de-
tector already yields good results, but further testing on a broader range of
video sequences and comparisson with existing work is necessary for a more ade-
quate performance evaluation. At the moment, however, we can already say that
multi-sensor fire analysis is very promising.
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