115,673 research outputs found

    Hybrid coastal edges in the Neuquén Basin (Allen Formation, Upper Cretaceous, Argentina)

    Get PDF
    The Allen Formation records the first Ingression Atlantic to the Neuquén Basin during the Late Cretaceous. The definition of lithofacies and facies associations interpretation for stratigraphic sections in Paso Córdoba and Salitral Moreno area, Río Negro, Argentina allowed to establish the depositional system that characterized this transgression in the northeastern edge of the Basin. In this paper we present sedimentological analysis of conglomeratic, sandstone, heterolithic and pelitic facies, which allowed the interpretation of tidal channels (CM), intertidal flats (PI), tidal flat influenced by storms (PT), subtidal flat (PS) and shoreface deposits (CP) parts of the depositional environment. These deposits represent a sedimentary records preserved example of hybrid systems, in which, the base of the sequence has greater tidal influence, while the upper portion is dominated by wave action. The paleocurrent data indicating a NNW-SSE direction to the shore and correlations and spatial distribution of facies associations propose paleogeographic and paleoenvironmental interpretations to Malargüe Group base. Then in this paper the relationship of this coastal environment presents with wind systems previously defined in this area for the Allen Formation.Fil: Armas, María Paula. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente.; ArgentinaFil: Sanchez, Maria Lidia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentin

    Pilot investigation of remote sensing for intertidal oyster mapping in coastal South Carolina: a methods comparison

    Get PDF
    South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages

    Tidal flat deposits of the Lower Proterozoic Campbell Group along the southwestern margin of the Kaapvaal Craton, Northern Cape Province, South Africa

    Get PDF
    Lower Proterozoic stromatolites and associated clastic carbonate deposits of the Campbell Group, from the southern margin (Prieska area) of the Kaapvaal Craton, northern Cape Province, are described. Contrary to previous interpretations (Beukes, 1978; 1980a) shallow subtidal to supratidal facies are recognised and discussed in regional context. An alternative model for the facies development of the Campbell Group is proposed

    Sedimentary lithofacies, petrography and diagenesis of the Kapuni group in the Kapuni Field, Taranaki Basin, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science with Honours in Earth Science at Massey University, Palmerston North, New Zealand

    Get PDF
    The reservoir architecture and quality of the Kapuni Group sandstones in seven wells (Kapuni−1, −3, −8, −12, Deep−1, 14 and −15) in the Kapuni Field are characterised using available core and digital geophysical log data. The study focused primarily on the Eocene Mangahewa Formation, but where limited core permits the older Kaimiro and Farewell formations are also examined. Eleven lithofacies in the Kapuni Group, identified and defined in core on the basis of colour, lithology, bedding, texture and sedimentary structures, are interpreted to represent tidal sand bar, tidal-inlet channel, fluvial-tidal channel, spit platform, sand flat, shallow marine, tidal channel, meandering tidal channel, mud flat, swamp and marsh environments. Correlation of core lithofacies with geophysical log motifs enabled lithofacies identification where core data are not available. Log motifs representing each of the lithofacies were then extrapolated to uncored sections of the Mangahewa Formation in the Kapuni Field wells. Interpretation of lithofacies in core and geophysical log motifs indicate that the Mangahewa Formation was deposited in an estuarine setting. During initial deposition of the Mangahewa Formation tide-dominated estuarine lithofacies were deposited. A major coal horizon, the K20 coal, in the field represents a period of maximum infilling. Above this coal core and log data indicate a wave-dominated estuary exhibiting a clearly- defined, "tripartite" (coarse-fine-coarse) distribution of lithofacies. Provenance studies suggest that low-grade metamorphic and granitic rocks are the dominant source for the Kapuni Group sandstones. Minor input from sedimentary and acid volcanic source rocks are also identified. A volcanic source, however, is more important in sandstones from the Farewell Formation, than in the younger Kapuni Group formations. Probable sources include the low-grade metamorphic rocks of Lower Cambrian to Permian age, Permian to Carboniferous Karamea Granite, Triassic and Jurassic greywacke-argillite sediments. Upper Cretaceous Pakawau Group sediments and Pre Cambrian to Upper Cretaceous acid volcanics. Reservoir quality variations in the Kapuni Group sandstones are directly related to environmental and diagenetic processes that have controlled porosity reduction and enhancement. Porosity has been reduced mainly by mechanical and chemical compaction, clay formation (predominantly kaolinite and illite in the Mangahewa and Kaimiro formations and smectite in the Farewell Formation), carbonate precipitation (primarily siderite and calcite), quartz and feldspar overgrowths and pyrite precipitation. While, porosity has been enhanced primarily by carbonate dissolution and subordinately by grain and clay dissolution and minor grain fracturing. The Mangahewa Formation sandstone lithofacies of tidal sand bar and tidal channel environments exhibit the best reservoir characteristics. Future reservoir development in the Kapuni Field and exploration in the Kapuni Field should focus on identifying and exploiting these lithofacies

    Pisces IV submersible observations in the epicentral region of the 1929 Grand Banks earthquake

    Get PDF
    The PISCES IVsubmersible was used to investigate the upper continental slope around 44 ON, 56 W, near the epicentre of the 1929 Grand Banks earthquake. Four dives in water depths of 800-2000 m were undertaken to observe speci3c features identijied with the SeaMARC I sidescan system in 1983. Two dives were made in the head of Eastern Valley where pebbly mudstones ofprobable Pleistocene age were recognized outcropping on the seafloor. Constructional features of cobbles and boulders, derived by exhumation and reworking of the pebbly mudstone, were also observed. These include gravel/sand bedforms (transverse waves) on the valley floor. Slope failure features in semiconsolidated mudstone were recognized on two dives onto the St. Pierre slope. Exposures in these mudstones are rapidly eroded by intense burrowing by benthic organisms

    Experimental research on the development of Ceratium hirundinella O.F.Muller [Translation from: Z.Bot. 14, 337-371, 1922]

    Get PDF
    The most important aim of this study lay in filling in the great gap in our knowledge of the processes of germination in the Ceratium cyst and the early developmental stages in the standing stock of Ceratium hirundinella. contained rich cysts, we now succeeded extraordinarily well in pursuing the consistent development of Ceratium from the cyst to the completed cell. A series of experiments were carried out on the cysts and the juvenile stages of Ceratium, which showed very interesting results. The author presents in a general descriptive part the normal processes of germination in Ceratium cysts and the development of the juvenile stages in order to show in an experimental part the changes in form of C. hirundinella under the influence of temperature, light and varying salinities

    Breedon Hill

    Get PDF
    Breedon Hill forms one of the most prominent features in the landscape of north-west Leicestershire, standing up 50 m above the surrounding ground. That it has been a major landmark throughout recorded history is suggested by its name, which is derived from the Celtic ‘bre’ and the Anglo-Saxon ‘dun’, both words meaning ‘hill’. Viewed from the east, the rugged vertical western quarry face is crowned by the church that looks very precarious; it stands about 70 m behind the quarry face, but looks much closer from a distance. To see the quarry and its geology at relatively close quarters, the viewing platform at the north end of the quarry should be visited. There is also a footpath that follows the quarry’s eastern rim. Quarry visits are limited to organized groups, but a few small exposures are present along the footpath from Breedon village up the western slopes of the hill

    Marine Benthic Habitat Mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska With an Evaluation of the Coastal and Marine Ecological Classification Standard III

    Get PDF
    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes
    corecore