1,835,374 research outputs found
Sliding modes in electrical drives and motion control
In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly
Impaired perception of biological motion in Parkinson’s disease
OBJECTIVE: We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. METHOD: Twenty-six nondemented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. RESULTS: The PD group demonstrated significantly less sensitivity to biological motion than the control group (p < .001, Cohen’s d = 1.22), regardless of stimulus gait type or speed, with a less substantial deficit in object motion perception (p = .02, Cohen’s d = .68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. CONCLUSION: PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus.Published versio
Learning for Advanced Motion Control
Iterative Learning Control (ILC) can achieve perfect tracking performance for
mechatronic systems. The aim of this paper is to present an ILC design tutorial
for industrial mechatronic systems. First, a preliminary analysis reveals the
potential performance improvement of ILC prior to its actual implementation.
Second, a frequency domain approach is presented, where fast learning is
achieved through noncausal model inversion, and safe and robust learning is
achieved by employing a contraction mapping theorem in conjunction with
nonparametric frequency response functions. The approach is demonstrated on a
desktop printer. Finally, a detailed analysis of industrial motion systems
leads to several shortcomings that obstruct the widespread implementation of
ILC algorithms. An overview of recently developed algorithms, including
extensions using machine learning algorithms, is outlined that are aimed to
facilitate broad industrial deployment.Comment: 8 pages, 15 figures, IEEE 16th International Workshop on Advanced
Motion Control, 202
Function based control for bilateral systems in tele-micromanipulation
Design of a motion control system should take into
account (a) unconstrained motion performed without interaction
with environment or any other system, and (b) constrained
motion with system in contact with environment or other systems.
Control in both cases can be formulated in terms of maintaining
desired system configuration what makes essentially the same
structure for common tasks: trajectory tracking, interaction force
control, compliance control etc. The same design approach can be
used to formulate control in bilateral systems aimed to maintain
desired functional relations between human and environment
through master and slave motion systems. Implementation of
the methodology is currently being pursued with a custom built
Tele-micromanipulation setup and preliminary results concerning
force/position tracking and transparency between master and
slave are clearly demonstrated
"Sticky Hands": learning and generalization for cooperative physical interactions with a humanoid robot
"Sticky Hands" is a physical game for two people involving gentle contact with the hands. The aim is to develop relaxed and elegant motion together, achieve physical sensitivity-improving reactions, and experience an interaction at an intimate yet comfortable level for spiritual development and physical relaxation. We developed a control system for a humanoid robot allowing it to play Sticky Hands with a human partner. We present a real implementation including a physical system, robot control, and a motion learning algorithm based on a generalizable intelligent system capable itself of generalizing observed trajectories' translation, orientation, scale and velocity to new data, operating with scalable speed and storage efficiency bounds, and coping with contact trajectories that evolve over time. Our robot control is capable of physical cooperation in a force domain, using minimal sensor input. We analyze robot-human interaction and relate characteristics of our motion learning algorithm with recorded motion profiles. We discuss our results in the context of realistic motion generation and present a theoretical discussion of stylistic and affective motion generation based on, and motivating cross-disciplinary research in computer graphics, human motion production and motion perception
Biography of David F. Cavers
A method for backstepping control of rigid body motion is proposed. The control variables are torques and the force along the axis of motion. The proposed control law and lyapunov function guarantee asymptotic stability from all initial values except one singular point
Design of environmental-friendly water hydraulic motion control systems for industrial applications
SMC framework in motion control systems
Design of a motion control system should take into account both the unconstrained motion performed without interaction with environment or other system, and the constrained motion where system is in contact with environment or has certain functional interaction with another system. In this paper control systems design approach, based on siding mode methods, that allows selection of control for generic tasks as trajectory and/or force tracking as well as for systems that require maintain some functional relation like bilateral or multilateral systems, establisment of virtual relation among mobile robots or control of haptic systems is presented. It is shown that all basic motion control problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance control - can be treated in the same way while avoiding the structural change of the controller and guarantying stable behavior of the system In order to show applicability of the proposed techniques simulation and experimental results for high precision systems in microsystems assembly tasks and bilateral control systems are presente
Distributed Collision-Free Motion Coordination on a Sphere: A Conic Control Barrier Function Approach
This letter studies a distributed collision avoidance control problem for a group of rigid bodies on a sphere. A rigid body network, consisting of multiple rigid bodies constrained to a spherical surface and an interconnection topology, is first formulated. In this formulation, it is shown that motion coordination on a sphere is equivalent to attitude coordination on the 3-dimensional Special Orthogonal group. Then, an angle-based control barrier function that can handle a geodesic distance constraint on a spherical surface is presented. The proposed control barrier function is then extended to a relative motion case and applied to a collision avoidance problem for a rigid body network operating on a sphere. Each rigid body chooses its control input by solving a distributed optimization problem to achieve a nominal distributed motion coordination strategy while satisfying constraints for collision avoidance. The proposed collision-free motion coordination law is validated via simulation
- …
