39,201 research outputs found

    A comparative study of optical properties and X-ray induced luminescence of octahedral molybdenum and tungsten cluster complexes

    Get PDF
    © 2017 The Royal Society of Chemistry. Octahedral metal cluster complexes have high potential for biomedical applications. In order to evaluate the benefits of these moieties for combined CT/X-ray luminescence computed tomography, this paper compares photoluminescence, radiodensity and X-ray induced luminescence properties of eight related octahedral molybdenum and tungsten cluster complexes [{M 6 I 8 }L 6 ] n (where M is Mo or W and L is I - , NO 3 - , OTs - or OH - /H 2 O). This article demonstrates that despite the fact that molybdenum cluster complexes are better photoluminescence emitters, tungsten cluster complexes, in particular (Bu 4 N) 2 [{W 6 I 8 }I 6 ], demonstrate significantly higher X-ray induced luminescence due to a combination of relatively good photoluminescence properties and high X-ray attenuation. Additionally, photo-degradation of [{M 6 I 8 }(NO 3 ) 6 ] 2- was evaluated

    Hexaazide octahedral molybdenum cluster complexes: synthesis, properties and the evidence of hydrolysis

    Get PDF
    This article reports the synthesis, crystal structure of new molybdenum hexaazide cluster complex (ⁿBu₄N)₂[{Mo₆I₈}(N₃)₆] (3) and comparison of its photophysical and electrochemical properties to those of earlier reported analogues (ⁿBu₄N)₂[{M₆X₈}(N₃)₆] (X = Cl, Br). Additionally, the dimerisation of 3 as a result of hydrolysis was revealed by mass spectrometry and single crystal X-Ray diffraction. Indeed, the structurally characterised compound (ⁿBu₄N)₄[{Mo₆I₈}(N₃)₅)₂O] represents the first example of oxo-bridged dimer of octahedral molybdenum clusters complexes

    Seven coordinate molybdenum and tungsten complexes containing Tpm and Tpm derivatives and the impact of ligand substitution on NMR chemical shifts

    Get PDF
    A series of known and new seven coordinate molybdenum and tungsten complexes of tris(pyrazolyl)methane (Tpm) and substituted Tpm, [TpmM(CO)3X]+, have been synthesized. Depending on the identity of X, (bromo, iodo, hydrido) and the substitution of the Tpm ligand, substantial chemical shift differences are observed for the hydrogen on the central carbon of the Tpm ligand. Factors impacting the chemical shift of the hydrogen on the central carbon of the Tpm ligand, such as the electron donating ability of the Tpm ligand and the electronegativity of the additional ligand on the metal, will be discussed

    Molybdenum-catalyzed enantioselective sulfoxidation controlled by a nonclassical hydrogen bond between coordinated chiral imidazolium-based dicarboxylate and peroxido ligands

    Get PDF
    Chiral alkyl aryl sulfoxides were obtained by molybdenum-catalyzed oxidation of alkyl aryl sulfides with hydrogen peroxide as oxidant in mild conditions with high yields and moderate enantioselectivities. The asymmetry is generated by the use of imidazolium-based dicarboxylic compounds, HLR. The in-situ-generated catalyst, a mixture of aqueous [Mo(O)(O2)2(H2O)n] with HLR as chirality inductors, in the presence of [PPh4]Br, was identified as the anionic binuclear complex [PPh4]{[Mo(O)(O2)2(H2O)]2( -LR)}, according to spectroscopic data and Density Functional Theory (DFT) calculations. A nonclassical hydrogen bond between one C–H bond of the alkyl R group of coordinated (LR)- and one oxygen atom of the peroxido ligand was identified as the interaction responsible for the asymmetry in the process. Additionally, the step that governs the enantioselectivity was theoretically analyzed by locating the transition states of the oxido-transfer to PhMeS of model complexes [Mo(O)(O2)2(H2O)( 1-O-LR)]- (R = H, iPr). The DDG6= is ca. 0 kcal mol-1 for R = H, racemic sulfoxide, meanwhile for chiral species the DDG6= of ca. 2 kcal mol-1 favors the formation of (R)-sulfoxide.Junta de Andalucía (Proyecto de Excelencia FQM-7079)Universidad de Sevilla (VI Plan Propio

    ‘User-friendly’ primary phosphines and an arsine: synthesis and characterization of new air-stable ligands incorporating the ferrocenyl group

    Get PDF
    Reaction of FcCH₂CH₂P(O)(OH)₂ or FcCH₂P(O)(OH)(OEt) [Fc=Fe(η⁵-C₅H₄)(η⁵-C₅H₅)] with excess CH₂N₂ followed by reduction with Me₃SiCl–LiAlH₄ gives the air-stable primary phosphines FcCH₂CH₂PH₂ and the previously reported analogue FcCH₂PH₂ in high yields. Reduction of 1,1′-Fc′[CH₂P(O)(OEt)₂] [Fc′=Fe(η⁵-C₅H₄)₂] and 1,2-Fc″[CH₂P(O)(OEt)₂] [Fc″=Fe(η⁵-C₅H₅)(η⁵-C₅H₃)] similarly gives the new primary phosphines 1,1′-Fc′(CH₂PH₂)₂ and 1,2-Fc″(CH₂PH₂)₂, respectively. The arsine FcCH₂CH₂AsH₂, which is also air-stable, has been prepared by reduction of the arsonic acid FcCH₂CH₂As(O)(OH)₂ using Zn/HCl. An X-ray structure has been carried out on the arsine, which is only the second structure determination of a free primary arsine. The molybdenum carbonyl complex [1,2-Fc″(CH₂PH₂)₂Mo(CO)₄] was prepared by reaction of the phosphine with [Mo(CO)₄(pip)₂] (pip=piperidine), and characterized by a preliminary X-ray structure determination. However, the same reaction of 1,1′-Fc′(CH₂PH₂)₂with [Mo(CO)₄(pip)₂] gave [1,1′-Fc′(CH₂PH₂)₂Mo(CO)₄] and the dimer [1,1′-Fc′(CH₂PH₂)₂Mo(CO)₄]₂, characterized by electrospray mass spectrometry. 1,1′-Fc′[CH₂PH₂Mo(CO)₅]₂ and 1,2-Fc″[CH₂PH₂Mo(CO)₅]₂ were likewise prepared from the phosphines and excess [Mo(CO)₅(THF)]

    Far-infrared spectroelectrochemistry: a study of linear molybdenum/iron/sulfur clusters

    Get PDF
    The far-infrared spectroelectrochemistry of linear M/Fe/S (M=Mo, W) complexes was investigated in methylene chloride and dichloroethane. With CsI as spectral windows, bands above 200 cm−1 can be observed in methylene chloride, except for a weak methylene chloride band at 450 cm−1. Substitution of dichloroethane for methylene chloride, solvents of nearly identical electrochemical properties, allows one to observe solute bands in the 450-cm−1 region. The far-infrared spectroelectrochemistry of [MoFe2S4Cl4]2− and its tungsten analogue was investigated. The disappearance of the oxidation bands and the appearance of bands due to the reduced product could be clearly observed. The origin of the vibrational bands could be clearly identified using 34S-substituted complexes. In addition to the far-infrared bands, the resonance Raman spectroelectrochemistry of the oxidized and reduced complex, along with the 34S-substituted complexes was obtained. Far-infrared and resonance Raman spectroelectrochemistry can be combined to understand the electrochemical mechanism of transition metal complexes. The far-infrared spectroelectrochemistry of [MoFe2S4Cl4]2− and its tungsten analogue was investigated. The disappearance of the initial bands and the appearance of bands due to the reduced product could be clearly observed. Resonance Raman spectroscopy and the use of 34S-substituted complexes were used for characterization of the reactant and products
    corecore