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and the impact of ligand substitution on NMR chemical shifts  

Cole Seager and Dr. Stacy O’Reilly 

 

Abstract 

 A series of known and new seven coordinate molybdenum and tungsten complexes of 

tris(pyrazolyl)methane (Tpm) and substituted Tpm, [TpmM(CO)3X]+, have been synthesized. 

Depending on the identity of X, (bromo, iodo, hydrido) and the substitution of the Tpm ligand, 

substantial chemical shift differences are observed for the hydrogen on the central carbon of the 

Tpm ligand. Factors impacting the chemical shift of the hydrogen on the central carbon of the 

Tpm ligand, such as the electron donating ability of the Tpm ligand and the electronegativity of 

the additional ligand on the metal, will be discussed.  

 

 

 

 

 

 

 

 

 

 

 



List of Abbreviations 

Tpm Tris(pyrazolyl)methane 214 g/mol 

Tpm’ Tris(3,5-dimethylpyrazolyl)methane 298 g/mol 

TpmPh Tris(3-phenylpyrazolyl)methane 439 g/mol 

TpmMe Tris(5-methylpyrazolyl)methane 256 g/mol 

W(CO)6 Tungsten hexacarbonyl 352 g/mol 

Mo(CO)6 Molybdenum hexacarbonyl 264 g/mol 

TpmW(CO)3 Tris(pyrazolyl)methyltungstentricarbonyl 482 g/mol 

TpmMo(CO)3 Tris(pyrazolyl)methylmolybdenumtricarbonyl 394 g/mol 

Tpm′W(CO)3 Tris(3,5-dimethylpyrazolyl)methyltungstentricarbonyl 566 g/mol 

Tpm′Mo(CO)3 Tris(3,5-dimethylpyrazolyl)methylmolybdenumtricarbonyl 478 g/mol 

TpmPhW(CO)3 Tris(3-phenylpyrazolyl)methyltungstentricarbonyl 710 g/mol 

TpmPhMo(CO)3 Tris(3-phenylpyrazolyl)methylmolybdenumtricarbonyl 622 g/mol 

TpmMeW(CO)3 Tris(5-methylpyrazolyl)methyltungstentricarbonyl 524 g/mol 

CO Carbon monoxide 28 g/mol 

FTIR Fourier-Transform Infrared Spectroscopy  

HNMR Hydrogen Nuclear Magnetic Resonance  

CNMR Carbon Nuclear Magnetic Resonance  

DMF Dimethylformamide  

 

 

 

 



Introduction 

Within many chemistry applications, there can be different molecules that have the 

ability to covalently bind to a central metal atom. These molecules are known as ligands, and 

when they bind to metal atoms, they form coordination complexes. These metal coordination 

complexes are extremely important because they have such versatile use within many realms of 

chemistry. These metal complexes are widely used as industrial catalysts, and many of these 

catalysts are growing in interest due to their ability to control chemical reactivity. However, one 

of their most significant uses is within biochemical applications. Many metal complex enzymes 

are present within a biological system that utilize a wide variety of metals like iron, zinc, and 

molybdenum. These complexes can serve a variety of purposes, such as affecting the rate at 

which carcinogenic cells can be mutated within the body. There are certain chemical functional 

groups, such as pyrazole (Figure 1) and pyrazole-related derivatives, that are known to inhibit 

several enzymes which commonly have a metal ion as the prosthetic group (the group 

permanently bound to a protein). Such examples of these enzymes that can be inhibited by 

pyrazole groups are alcohol dehydrogenases and tryptophan oxygenases.1 

 

 

 

Figure 1: Pyrazole 

 

As ligands, such as carbon monoxide (CO), approach a metal center in an octahedral 

geometry, the electrons from the ligand interact with the outermost orbitals of the metal. For 

transition metals, the d orbitals are the frontier orbitals and strongly interact with the incoming 

HN

N



ligands. Some d orbitals, such as the dxy, dxz, and dyz orbitals, do not interact directly with the 

incoming ligand in a sigma bonding fashion. This discrepancy in the interactions, leading to a 

loss of degeneracy, is known as d orbital splitting. 

 

 Carbon monoxide (CO) ligands have empty antibonding π orbitals. The carbon-oxygen 

antibonding orbitals can overlap with the metal t2g orbitals, and this overlap allows CO to act as a 

π-acceptor ligand. If the t2g orbitals are occupied, the metal can move electron density from the 

metal center to the ligand. This interaction is depicted below with the red arrows. In the case of 

the CO ligand, the antibonding π orbitals and the t2g orbitals on a metal center are known to have 

some of the strongest interactions with one another. Shown below is an image of the electrons in 

the t2g orbital in a metal center interacting with the empty π* antibonding orbitals of the CO 

ligand, shown below in Figure 2. The sharing of electron density strengthens the bond between 

the metal center and the carbon atom of the CO ligand, and weakens the C-O triple bond.  Since 

the metal center is acting as a Lewis base, this act of pushing electron density from an electron-

rich metal center to π antibonding orbitals of a ligand is known as back bonding.  

   

 

 

 

Figure 2: Image of electrons being shared between filled metal t2g orbitals and CO π* 

antibonding orbitals 

 



The extent of back bonding can be measured through FTIR spectroscopy by observing the 

change in stretching frequencies of the CO ligands. CO ligands are useful due to their inherent 

neutrality, their well-documented stretching frequencies, and their ability to act as excellent π-

acceptor ligands. An electron rich metal can utilize its electron density and participate in back 

bonding with the CO π-acceptor ligands. The electron density of the metal center is pushed into 

the CO π* antibonding orbital, which effectively shortens the metal-carbon bond and lengthens 

the C-O bond. 

 The energy required to stretch the CO bond is given by Planck’s equation, where the 

energy required is proportional to the frequency of the light energy, or inversely proportional to 

the wavelength of the light. 

 

E = hn = !"
l

 

In the equation above, h is planck’s constant, n is the frequency of the light energy, c is the speed 

of light, and l is the light’s wavelength 

 

The energy of the stretch, though, is most commonly related to the wavenumber of the light, ν, 

which can be related to the light’s wavelength. 

ν =
1
l

 

The energy of a stretch then will be proportional to its wavenumber. A stretch with a higher 

wavenumber has a larger stretching energy, and is therefore a stronger bond. 

E = hcν 

Subsequently, electron density is pushed into the C-O antibonding orbital, and the bond is now 

weakened and elongated, allowing the C-O bond to stretch more easily. As the bond is able to 



stretch more easily, the wavenumber is lowered, which is observable and measurable through 

FTIR spectroscopy. The ability to track the amount of electron density present on the metal 

center readily available to be pushed to p-acceptor ligands, and the affects that has on the 

wavenumber of the CO stretch, can be easily tracked. This is relevant because as the complexes 

undergo various synthetic manipulations, such as changing the metal center, changing the 

identity of various ligands, or changing the overall charge on the complex, the change in the total 

electron density at the metal center can be measured by FTIR.  

 

Tris(pyrazolyl)methane ligands 

 Originally synthesized by Trofimenko in the 1970’s, the tris(pyrazolyl)methane ligands, 

Tpm (Figure 3) are a class of ligands called scorpionate ligands.2 The facially coordinating 

neutral ligands can be varied based on the substituents on the pyrazole rings. The various sites on 

the pyrazole rings are shown in Figure 3. The ligand has a three-fold axis of symmetry and the 

NMR of the parent ligands contains only three signals: three for the hydrogens of the pyrazole 

rings and one for the hydrogen on the central sp3 hybridized carbon. Unusually, this hydrogen is 

observed at 8.57 ppm in the 1H NMR, incredibly downfield for a hydrogen on an sp3 hybridized 

carbon. 
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Figure 3: Tris(pyrazolyl)methane ligand (Tpm) and associated derivatives 

 

The structures of these ligands will feature the addition of two methyl groups to the 3,5 positions 

on the pyrazole rings (1b), a phenyl group present on the 3 position of the pyrazole rings (1c), 

and a few examples of a single methyl group in the 5 position of the pyrazole (1d). In all cases, 

the ring maintains its three-fold axis of symmetry. By introducing a variety of newly substituted 

groups on the original Tpm ligand, the overall electron density present on the metal complex will 

be altered. 

 The Tpm ligands can easily be incorporated into Group 6 metal complexes through 

reaction with hexacarbonyl metal complexes, and many of these reactions were originally 

reported by Trofimenko.2 The six coordinate Tpm tricarbonyl complexes can undergo two 

electron oxidations by a series of electrophiles. In the oxidized metal complexes, differences in 

the electron density present within the transition metal complex can not only be measured by 

changes in the CO stretching wavenumber, but also by changes in the chemical shift of the 

central hydrogen. An understanding of how electron density travels throughout the transition 

metal complex can be explored by observing how NMR chemical shifts of the complexes are 

either heavily affected, or not affected whatsoever. 

 

 

Experimental Section 

All reactions were performed under a nitrogen atmosphere with standard Schlenk techniques. 

Solvents were using an Mbraun solvent purification system. All reagents were obtained from 

commercial sources, and used as received, except for tungsten hexacarbonyl which underwent 



sublimation. IR spectra were recorded on a Nicolet iS10 FT-IR spectrometer in a methylene 

chloride solution. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 Avance MHz 

NMR, with chemical shifts reported downfield relative to TMS. TpmMe was synthesized by Cody 

Carley, from experimental methods utilized by Goodman et. al.3 

 

Tris(pyrazolyl)methane (Tpm, 1a): To a 250 mL round bottom flask was added pyrazole (4.0 

g, 59 mmol), tetrabutylammonium bromide (0.95 g, 2.9 mmol) and DI water (60 mL, 3.3 mol). 

Sodium carbonate (38.2 g, 360 mmol) was gradually added to form a slurry, and chloroform (29 

mL, 243 mmol) was added to the slurry. With stirring, the reaction mixture was heated to reflux 

for four days. After reflux, the solution had separated into a diphasic solution with a suspension 

of solid Na2CO3. The solid Na2CO3 was removed via gravity filtration. Diethyl ether (80 mL) 

was added, and the aqueous layer was extracted (3 x 40 mL) with diethyl ether. The organic 

layer was treated with charcoal and magnesium sulfate, which was removed via filtration. The 

solvent was removed via rotary evaporation to yield 0.36 g (1.7 mmol) of Tpm (1a) (57%).  1H 

NMR (400 MHz, CDCl3) d 8.59 (s, 1H, (pz)3CH) 7.71 (d, 3H) 7.56 (d, 3H) 6.29 (dd, 3H).  

 

 

Tris(3,5-dimethylpyrazolyl)methane (Tpm′, 1b) : To a 250 mL round bottom flask was added 

3,5-dimethylpyrazole (6.80 g, 71 mmol), tetrabutylammonium bromide (1.40 g, 4.4 mmol) and 

DI water (70 mL, 3.8 mol). Sodium carbonate (58.6 g, 552 mmol) was gradually added to form a 

slurry, and chloroform (30 mL, 260 mmol) was added to the slurry. With stirring, the reaction 

mixture was heated to reflux for four days. After reflux, the solution had separated into a 

diphasic solution with a suspension of solid Na2CO3. The solid Na2CO3 was removed via gravity 



filtration. Diethyl ether (80 mL) was added, and the aqueous layer was extracted (3 x 40 mL) 

with diethyl ether. The organic layer was treated with charcoal and magnesium sulfate, which 

was removed via filtration. The solvent was removed via rotary evaporation to yield 0.54 g (1.8 

mmol) of Tpm′ (1b) (18%). 1H NMR (400 MHz, CDCl3) d 8.07 (s 1H, (pz)3CH) 5.38 (s, 1H, 

C=CH) 2.19 (s, 1H, C-CH3) 2.02 (s, 1H, C-CH3). 

 

TpmW(CO)3: To a 250 mL three necked flask, W(CO)6 (1.01 g, 2.87 mmol) and 

tris(pyrazolyl)methane (0.61 g, 2.8 mmol) in DMF (50 mL) under nitrogen was heated to reflux 

for approximately 16 hours. The suspension was initially a light yellow-orange in color, and 

darkened as the reaction proceeded. The mixture was allowed to cool to room temperature and 

cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o, filtered, 

and the solid was dried under vacuum over night to produce 1.2 g (2.6 mmol) (90%) of a 

powdery, yellow solid. IR: vCO = 1880, 1743. 

 

TpmMo(CO)3: To a 250 mL three necked flask, Mo(CO)6 (1.01 g, 3.84 mmol) and 

tris(pyrazolyl)methane (0.82 g, 3.8 mmol) in DMF (50 mL) under nitrogen was heated to reflux 

for approximately 16 hours. The suspension was initially a light yellow-orange in color, and 

darkened as the reaction proceeded. The mixture was allowed to cool to room temperature and 

cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, filtered, 

and the solid was dried under vacuum overnight to produce 1.4 g, (3.5 mmol) (90%) of a 

powdery, yellow solid. IR: vCO = 1882, 1763. 

 



Tpm′W(CO)3: To a 250 mL three necked flask, W(CO)6 (1.0 g, 2.9 mmol) and tris(3,5-

dimethylpyrazolyl)methane (0.82 g, 2.8 mmol) in DMF (50 mL) under nitrogen was heated to 

reflux for approximately 16 hours. The suspension was initially a light yellow-orange in color, 

and darkened as the reaction proceeded. The mixture was allowed to cool to room temperature 

and cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, 

filtered, and the solid was dried under vacuum overnight to produce 1.3 g (2.3 mmol) (81%) of a 

powdery, yellow solid. IR: vCO = 1888, 1750. 

 

Tpm′Mo(CO)3: To a 250 mL three necked flask, Mo(CO)6 (1.0 g, 3.8 mmol) and tris(3,5-

dimethylpyrazolyl)methane (1.1 g, 3.8 mmol) in DMF (50 mL) under nitrogen was heated to 

reflux for approximately 16 hours. The suspension was initially a light yellow-orange in color, 

and darkened as the reaction proceeded. The mixture was allowed to cool to room temperature 

and cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, 

filtered, and the solid was dried under vacuum overnight to produce 1.5 g (3.3 mmol) (85%) of a 

powdery, yellow solid. IR: vCO = 1900, 1762. 

 

TpmPhW(CO)3: To a 250 mL three necked flask, W(CO)6 (1.0 g, 2.9 mmol) and tris(3-

phenylpyrazolyl)methane (1.3 g, 2.9 mmol) in DMF (50 mL) under nitrogen was heated to reflux 

for approximately 6 hours. The suspension was initially a light yellow-orange in color, and 

darkened as the reaction proceeded. The mixture was allowed to cool to room temperature and 

cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, filtered, 

and the solid was dried under vacuum overnight to produce 1.7 g  (2.5 mmol) (86%) of a 

powdery, yellow solid. IR: vCO = 1884, 1749. 



TpmPhMo(CO)3: To a 250 mL three necked flask, Mo(CO)6 (1.0 g, 3.8 mmol) and tris(3-

phenylpyrazolyl)methane (1.7 g, 3.8 mmol) in DMF (50 mL) under nitrogen was heated to reflux 

for approximately 6 hours. The suspension was initially a light yellow-orange in color, and 

darkened as the reaction proceeded. The mixture was allowed to cool to room temperature and 

cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, filtered, 

and the solid was dried under vacuum overnight to produce 1.9 g (3.2 mmol) (84%) of a 

powdery, yellow solid. IR: vCO = 1891, 1759.  

 

Tpm(5-methyl)W(CO)3: To a 250 mL three necked flask, W(CO)6 (0.84 g, 2.4 mmol) and 

tris(5-methylpyrazolyl)methane (0.61 g, 2.4 mmol) in DMF (50 mL) under nitrogen was heated 

to reflux for approximately 16 hours. The suspension was initially a light yellow-orange in color, 

and darkened as the reaction proceeded. The mixture was allowed to cool to room temperature 

and cold methanol (15 mL) was added to the mixture. The mixture was then cooled to 0o C, 

filtered, and the solid was dried under vacuum overnight to produce 1.0 g (1.9 mmol) (81%) of a 

powdery, yellow solid. IR: vCO = 1886, 1745. 

 

[TpmW(CO)3I][I]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmW(CO)3 (0.15 g, 

0.43 mmol) was dissolved in methylene chloride (15 mL). Elemental iodine (0.11 g, 0.43 mmol) 

was added, and the solution was stirred for 30 minutes at room temperature. Diethyl ether (15 

mL) was added to precipitate a brown-orange solid from solution. The precipitate was collected 

via cannula filtration and dried under vacuum, yielding 0.19 g (0.31 mmol) (73%). IR: vCO = 

2036, 1960, 1928. 1H NMR (400 MHz, CD2Cl2) d 11.4 (s, 1H, (pz)3CH) 8.93 (d, Tpm-NCH) 



8.50 (d, Tpm-NCH) 6.60 (dd, Tpm-C=CH). 13C NMR (400 MHz, CD2Cl2) d 227.8 (CO) 150.0 

(N-N=C), 135.6 (CH-N-C), 109.8 (N-C=C), 73.5 (HC(pz)3).  

 

 [TpmMo(CO)3I][I]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmMo(CO)3 (0.15 

g, 0.38 mmol) was dissolved in methylene chloride (15 mL). Elemental iodine (0.10 g, 0.38 

mmol) was added, and the solution was stirred for 30 minutes at room temperature. Diethyl ether 

(15 mL) was added to precipitate a brown-orange solid from solution. The precipitate was 

collected via cannula filtration and dried under vacuum, yielding 0.15 g (0.29 mmol). (76%) IR: 

vCO = 2044, 1976, 1945. 1H NMR (400 MHz, CD2Cl2) d 11.9 (s, 1H, (pz)3CH) 9.14 (d, 1H, 

Tpm-NCH) 8.73 (d, 1H, Tpm-NCH) 6.85 (dd, 1H, Tpm-C=CH). 13C NMR was unattainable due 

to the fluxional behavior of the Tpm molybdenum complex. 

 

[TpmW(CO)3H][BF4]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmW(CO)3 

(0.15 g, 0.43 mmol) was dissolved in methylene chloride (15 mL). Tetrafluoroboric acid (0.15 

mL, 0.78 mmol) in diethyl ether was added, and the solution was stirred for 1 hour at room 

temperature. Diethyl ether (15 mL) was added to precipitate a white solid from solution. The 

precipitate was collected via cannula filtration and dried under vacuum, yielding 0.12 g (0.25 

mmol) (58%) IR: vCO = 2022, 1935, 1912. 1H NMR (400 MHz, CD2Cl2) d 9.56 (s, 1H, 

(pz)3CH) 8.38 (d, 1H, Tpm-NCH) 8.15 (d, 1H, Tpm-NCH) 6.47 (dd, 1H, Tpm-CCH) -2.57 (s, 

1H, WH) 13C NMR (400 MHz, CD2Cl2) d 215.0 (CO), 149.7 (N-N=C), 135.6 (CH-N-C), 108.3 

(N-C=C), 76.5 (HC(pz)3).  

 



[TpmMo(CO)3H][BF4]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmW(CO)3 

(0.15 g, 0.39 mmol) was dissolved in methylene chloride (15 mL). Tetrafluoroboric acid (0.10 

mL, 0.52 mmol) in diethyl ether was added, and the solution was stirred for 1 hour at room 

temperature. Diethyl ether (15 mL) was added to precipitate a white solid from solution. The 

precipitate was collected via cannula filtration and dried under vacuum, yielding 0.13 g (0.24 

mmol) (60%). IR: vCO = 2029, 1939, 1921. 1H NMR (400 MHz, CD2Cl2) d 9.54 (s, 1H, 

(pz)3CH) 8.47 (d, 1H, Tpm-NCH) 8.18 (d, 1H, Tpm-NCH) 6.57 (dd, 1H, Tpm-CCH) -3.08 (s, 

1H, MoH). 13C NMR was unattainable due to the fluxional behavior of the Tpm molybdenum 

complex. 

 

[TpmW(CO)3Br][Br]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmW(CO)3 

(0.15 g, 0.43 mmol) was dissolved in methylene chloride (15 mL). Bromine solution (0.4 M) in 

methylene chloride  (1.1 mL, 0.43 mmol) was added, and the solution was stirred for 1 hour at 

room temperature. Diethyl ether (15 mL) was added to precipitate a brown-yellow solid from 

solution. The precipitate was collected via cannula filtration and dried under vacuum, yielding 

0.16 g (0.28 mmol) (66%). IR: vCO = 2045, 1966, 1925. 1H NMR (400 MHz, CD2Cl2) d 13.1 (s, 

1H, (pz)3CH) 8.98 (d, 1H, Tpm-NCH) 8.34 (d, 1H, Tpm-NCH) 6.54 (dd, 1H, Tpm-CCH) 13C 

NMR (400 MHz, CD2Cl2) d 197.2 (CO), 149.4 (N-N=C), 136.6 (CH-N-C), 109.5 (N-C=C), 72.9 

(HC(pz)3).  

 

[TpmMo(CO)3Br][Br]: To a 50 mL Schlenk flask under nitrogen atmosphere, TpmMo(CO)3 

(0.15 g, 0.39 mmol) was dissolved in methylene chloride (15 mL). Bromine solution (0.4 M) in 

methylene chloride (0.97 mL, 0.38 mmol) was added, and the solution was stirred for 1 hour at 



room temperature. Diethyl ether (15 mL) was added to precipitate a brown-yellow solid from 

solution. The precipitate was collected via cannula filtration and dried under vacuum, yielding 

0.14 g (0.25 mmol) (65%). IR: vCO = 2056, 1989, 1946. 1H NMR (400 MHz, CD2Cl2) d 12.8 (s, 

1H, (pz)3CH) 8.98 (d, 1H, Tpm-NCH) 8.27 (d, 1H, Tpm-NCH) 6.53 (dd, 1H, Tpm-C=CH). 13C 

NMR was unattainable due to the fluxional behavior of the Tpm molybdenum complex.  

 

[Tpm′W(CO)3I][I]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′W(CO)3 (0.15 

g, 0.27 mmol) was dissolved in methylene chloride (15 mL). Elemental iodine (0.1 g, 0.3 mmol) 

was added, and the solution was stirred for 30 minutes at room temperature. Diethyl ether (15 

mL) was added to precipitate an orange solid from solution. The precipitate was collected via 

cannula filtration and dried under vacuum, yielding 0.16 g (0.20 mmol) (74%). IR: vCO = 2054, 

2032, 1931. 1H NMR (400 MHz, CD2Cl2) d 7.99 (s, 1H, (pz)3CH) 6.30 (s, 3H, Tpm-C=CH) 2.73 

(s, 9H, C-CH3) 2.34 (s, 9H, C-CH3) 

 

 [Tpm′Mo(CO)3I][I]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′Mo(CO)3 

(0.15 g, 0.32 mmol) was dissolved in methylene chloride (15 mL). Elemental iodine (0.1 g, 0.3 

mmol) was added, and the solution was stirred for 30 minutes at room temperature. Diethyl ether 

(15 mL) was added to precipitate an orange solid from solution. The precipitate was collected via 

cannula filtration and dried under vacuum, yielding 0.13 g (0.18 mmol) (56%). IR: vCO = 2043, 

2019, 1956. 1H NMR (400 MHz, CD2Cl2) d 8.14 (s, 1H, (pz)3CH) 6.36 (s, 3H, Tpm-C=CH) 2.86 

(s, 9H, C-CH3) 2.39 (s, 9H, C-CH3). 13C NMR was unattainable due to the fluxional behavior of 

the Tpm’ molybdenum complex. 

 



[Tpm′W(CO)3H][BF4]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′W(CO)3 

(0.15 g, 0.27 mmol) was dissolved in methylene chloride (15 mL). Tetrafluoroboric acid (0.05 

mL, 0.26 mmol) in diethyl ether was added, and the solution was stirred for 1 hour at room 

temperature. Diethyl ether (15 mL) was added to precipitate a white solid from solution. The 

precipitate was collected via cannula filtration and dried under vacuum, yielding 0.12 g (0.20 

mmol) (78%). IR: vCO = 2012, 1927, 1893. 1H NMR (400 MHz, CD2Cl2) d 8.09 (s, 1H, 

(pz)3CH) 6.27 (s, 3H, Tpm-CCH) 2.70 (s, 9H, C-CH3) 2.68 (s, 9H, C-CH3) -2.45 (s, 1H, WH) 

13C NMR (400MHz, CD2Cl2) d 212.6 (CO), 156.7 (N-N=C), 145.2 (CH-N-C),109.3 (N-C=C), 

68.9 (HC(pz)3), 15.1 (H3C-pz), 12.6 (H3C-pz).  

 

 [Tpm′Mo(CO)3H][BF4]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′Mo(CO)3 

(0.15 g, 0.32 mmol) was dissolved in methylene chloride (15 mL). Tetrafluoroboric acid (0.04 

mL, 0.26 mmol) in diethyl ether was added, and the solution was stirred for 1 hour at room 

temperature. Diethyl ether (15 mL) was added to precipitate a white solid from solution. The 

precipitate was collected via cannula filtration and dried under vacuum, yielding 0.12 g (0.25 

mmol) (74%). IR: vCO = 2020, 1938, 1918. 1H NMR (400 MHz, CD2Cl2) d 8.03 (s, 1H, 

(pz)3CH) 6.23 (s, 3H, Tpm-CCH) 2.68 (s, 9H, C-CH3) 2.67 (s, 9H, C-CH3) -3.35 (s, 1H, MoH)  

 

 

[Tpm′W(CO)3Br][Br]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′W(CO)3 

(0.15 g, 0.27 mmol) was dissolved in methylene chloride (15 mL). Bromine solution (0.4 M) in 

methylene chloride (0.78 mL, 0.30 mmol) was added, and the solution was stirred for 1 hour at 

room temperature. Diethyl ether (15 mL) was added to precipitate a brown-yellow solid from 



solution. The precipitate was collected via cannula filtration and dried under vacuum, yielding  

0.13 g (0.22 mmol) (79%). IR: vCO = 2036, 1958, 1928. 1H NMR (400 MHz, CD2Cl2) d 8.03 (s, 

1H, (pz)3CH) 6.29 (s, 3H, Tpm-CCH) 2.75 (s, 9H, C-CH3) 2.32 (s, 9H, C-CH3) 

 

[Tpm′Mo(CO)3Br][Br]: To a 50 mL Schlenk flask under nitrogen atmosphere, Tpm′Mo(CO)3 

(0.15 g, 0.32 mmol) was dissolved in methylene chloride (15 mL). Bromine solution (0.4 M) in 

methylene chloride (0.81 mL, 0.32 mmol) was added, and the solution was stirred for 1 hour at 

room temperature. Diethyl ether (15 mL) was added to precipitate a brown-yellow solid from 

solution. The precipitate was collected via cannula filtration and dried under vacuum, yielding 

0.14 g (0.23 mmol) (68%). IR: vCO = 2048, 1973, 1952. 1H NMR (400 MHz, CD2Cl2) d 8.16 (s, 

1H, (pz)3CH) 6.23 (s, 3H, Tpm-CCH) 2.80 (s, 9H, C-CH3) 2.25 (s, 9H, C-CH3). 13C NMR was 

unattainable due to the fluxional behavior of the Tpm molybdenum complex. 

 

 

Results and Discussion 

Synthesis of metal complex 

 The Tpm ligands were synthesized as previously reported with a few minor changes. The 

ligands are known to be very difficult to synthesize with many reported synthetic routes yielding 

less than 20 percent yield. The reported reactions with the highest percent yields, had to be 

rescaled to amounts doable in the laboratory. The scaled back routes resulted in percent yields of 

57% for Tpm and 12% for Tpm′. Shown below in Scheme 1 is the reaction pathway followed in 

order to synthesize the Tpm, Tpm′, and TpmPh ligands. 



 

  

 

 

 

 

 

 

Scheme 1. Synthetic route to Tpm ligands 

 

The Tpm tricarbonyl metal complexes were synthesized as previously reported, with 

minor changes in the reflux time for the TpmPh metal complex (Scheme 2). The metal complexes 

are known to be bright yellow, air sensitive, and highly insoluble in common solvents.  

 

 

 

 

 

 

Scheme 2. Synthetic route to neutral Tpm tricarbonyl metal complex 

 

The synthetic routes are not difficult and can be done on multigram scales with yields reaching 

above 80%. The routes utilized in this work resulted in percent yields between 80 and 90% for 
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the four various Tpm metal complexes: 90% for TpmW(CO)3 (2a), 90% for TpmMo(CO)3 (2b), 

81% for Tpm′W(CO)3 (2c), and 85% for Tpm′Mo(CO)3 (2d).  

 

In previous work done by Dilsky et. al., there were a small sample of cationic seven coordinate 

Tpm metal complexes that had successfully synthesized and analyzed. These reactions were 

repeated in the realm of this work with minor deviations from the experimental work of Dilsky. 

These reactions were previously ran for 2 hours, however it was found within this work that 

comparable results could be achieved within 30 minutes with all three electrophilic species. It 

was noted within Dilsky’s work that were difficulties working with the cationic molybdenum 

bromide complexes due to the fluxionality within the complex. This fluxionality arises from the 

metal complexes desire to be in the most optimal geometry possibly with the seven coordinated 

ligands, while also maintaining an 18 electron system. Dilsky’s previous work, as well as current 

IR spectra, suggests that there is fluxionality between a 4:3 piano stool geometry and a 3:3:1 

geometry, which is evident that both geometries are equally as favorable for the complex. This 

ultimately leads to difficulties in obtaining NMR data.4 Shown below in Figures 4, 5, and 6 are 

the three various reactions for the synthesis of the hydride, bromide, and iodide cationic species. 

 

 Specifically, TpmM(CO)3 (2a-2d) will undergo reaction with HBF4 to yield the cationic 

hydride complex. The hydride complexes have been synthesized for the tungsten and 

molybdenum complexes of Tpm and Tpm′, and for tungsten only with TpmMe. For 

[TpmW(CO)3H]+, the hydride ligands are observed at approximately -2.5 ppm with tungsten 

coupling of approximately 10 Hz. 

 



 

 

 

Figure 4. Synthetic route for cationic hydride Tpm metal complexes. 

 

TpmM(CO)3 will undergo reaction with Br2 to produce the cationic bromide complex. 

While all of the complexes exhibit fluxional behaviors between a 3-4 and 3-3-1 geometry, the 

molybdenum Tpm and Tpm′ bromide complexes are extremely fluxional on the NMR time scale 

at room temperature, resulting in broad 13C NMR signals for the carbon of the CO ligand.4  

 

 

 

 

Figure 5. Synthetic route for cationic bromide Tpm metal complexes. 

  

TpmM(CO)3 will successfully undergo reaction with I2 to produce the cationic iodide 

complex. This similarly synthesized iodide derivative is the most stable for both of the metals 

and all ligands utilized. 

 

 

 

 

Figure 6. Synthetic route for cationic iodide Tpm metal complexes. 
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 Among these three various cationic complexes, it is seen that when the Tpm ligand and 

the metal center stay constant, the FTIR stretching frequencies of the CO groups will increase in 

wave number value as the electronegativity of the newly coordinated cationic ligand increases. 

When one cationic complex is compared to the precursor neutral six-coordinate complex, it is 

also seen that the introduction of an electronegative ligand will also increase the FTIR stretching 

frequencies in regards to the neutral six-coordinate Tpm metal complex.   

 

Tungsten vs. molybdenum metal center:  

The amount of electron density present on the metal center can be seen in back bonding trends 

across the synthesized complexes. In a comparison of tungsten and molybdenum, tungsten has 

more electron density than molybdenum. This is due to the fact that tungsten is one row lower on 

the periodic table than molybdenum, meaning that tungsten has a higher overall amount of 

electrons than molybdenum. The CO groups of the molybdenum metal complex should appear at 

a higher wave number in the IR spectra than the tungsten metal complex, since there is less 

electron density available for the π* CO orbitals in the molybdenum complexes. The specific 

species which will be compared are TpmW and TpmMo species, Tpm′W and Tpm′Mo species, 

and the TpmPhW and TpmPhMo tricarbonyl species. Solid state IR spectrawere obtained for a 

series of octahedral Tpm, Group 6, tricarbonyl complexes. The data is shown below in Table 1.  

 TpmM(CO)3 Tpm′M(CO)3 TpmPhM(CO)3 

W 1880 and 1743 cm-1 1888 and 1750 cm-1 1884 and 1749 cm-1 

Mo 1882 and 1763 cm-1 1900 and 1764 cm-1 1891 and 1759 cm-1 

Table 1: Solid state IR stretching frequencies for neutral Tpm metal complexes. 



 

Among the two Tpm metal complexes, the TpmMo(CO)3 CO stretches appear at 1882 and 1763 

cm-1, and in TpmW(CO)3, the CO stretches appear at 1880 and 1743 cm-1. Among the two Tpm′ 

metal complexes, the Tpm′Mo(CO)3 CO stretches appear at 1900 and 1762 cm-1, and in 

Tpm′W(CO)3, the CO stretches appear at 1888 and 1750. Among the two TpmPh metal 

complexes, the TpmPhMo(CO)3 CO stretches appear at 1891 and 1759 cm-1, and in 

TpmPhW(CO)3, the CO stretches appear at 1884 and 1749 cm-1. Since tungsten is one row down 

from molybdenum, tungsten inherently possesses more electron density, and pushes more 

electron density into the p* orbitals of the CO ligands, so the CO stretching frequencies are 

observed at a lower wave number for all tungsten complexes regardless of which Tpm ligand 

was used.  

 

Tpm, Tpm′, TpmMe, and TpmPh ligand: Back bonding trends that are attributed to the varied 

Tpm ligands can be seen among the complexes. Between the various Tpm ligands, the Tpm′ 

ligand provides the most electron density since it is disubstituted, and the Tpm ligand provides 

the least electron density. The methyl groups belonging to the Tpm′ ligand are electron donating, 

providing more electron density to the metal center. Tpm′ is known to have the capability to 

provide more electron density to the metal center than the Tpm ligand due to the presence of the 

methyl groups.5 The CO groups of the Tpm′ metal complex should appear at the lower wave 

numbers, and the CO groups of the Tpm metal complex should appear at the highest wave 

numbers. It is seen that among all four of the varied ligands, there is are nearly identical CO 

stretching frequencies in the solid state IR. What this means is that in solid state, the Tpm ligand 

is not impacting the degree of back bonding.  



Neutral vs. Cationic tricarbonyl complexes: The CO stretching frequencies were obtained in 

solid state for a series of neutral Tpm, Group 6, tricarbonyl complexes and in solution for a series 

of cationic Tpm, Group 6, tricarbonyl complexes. Between both the neutral complex and the 

cationic complex, there is an increase in the attraction of electrons away from the metal center as 

a newly coordinated cationic ligand is introduced to the neutral metal complex. As the 

electronegative ligand is introduced, there is less available electron density present in the metal 

center to participate in back bonding, which will result in an overall higher wave number present 

in the IR. Therefore, it should follow that the CO groups of the cationic tricarbonyl complex will 

have a higher stretching frequency than that of the neutral tricarbonyl complex. Shown below in 

Table 2 are both the neutral and cationic tricarbonyl molybdenum and tungsten metal 

complexes.  

 TpmM(CO)3 [TpmM(CO)3H]+BF4- 

W 1880 and 1743 cm-1 2022, 1935, 1912 

Mo 1882 and 1763 cm-1 2029, 1939, 1921.  

 

Table 2. Solid state and solution IR stretching frequencies for neutral and cationic Tpm species 

 

As seen in Table 2, the CO stretching frequencies for the neutral tungsten and 

molybdenum complexes have a lower stretching frequency than the cationic complexes. 

Therefore, as an electronegative ligand is coordinated to a neutral tricarbonyl complex, the CO 

stretching frequency of the new cationic complex will be higher than that of the neutral complex.   

 



H vs. Br vs. I ligand: The CO stretching frequencies for a series of cationic Tpm, Group 6, 

tricarbonyl complexes were obtained in solution. Between the three ligands, the bromo ligand 

has the highest electronegativity, the iodo the next, and the hydrido the lowest electronegativity. 

Electronegativity is a measure of the willingness of an atom to attract electrons in a covalent 

bond. The electron density is attracted towards the more electronegative ligand, such as the I or 

Br. These compounds have a higher electronegativity in comparison to the metal center, which 

means there is less electron density present on the metal center. The results from this interaction 

are a higher wave number in the IR. Therefore, the CO groups of the bromo transition metal 

complex will have the highest stretching frequency, the CO groups of the iodo transition metal 

complex will have the next highest, and the CO groups of the hydrido transition metal complex 

will have the lowest stretching frequency. Table 3 organizes the twelve various transition metal 

complexes into both columns based on the metal center, and rows based on the increasing 

electronegativity of the anionic ligand.   

 [TpmM(CO)3H]+BF4- [TpmM(CO)3I]+I- [TpmM(CO)3Br]+Br- 

W 2022, 1935, 1912 2036, 1960, 1928 2045, 1966, 1925 

Mo 2029, 1939, 1921 2044, 1976, 1945 2056, 1989, 1946 

 [Tpm’M(CO)3H]+BF4- [Tpm’M(CO)3I]+I- [Tpm’M(CO)3Br]+Br- 

W 2012, 1927, 1893 2054, 2032, 1931 2036, 1958, 1928 

Mo 2020, 1938, 1918 2043, 2019, 1956 2048, 1973, 1952 

Table 3: Solution IR stretching frequencies for Tpm group six cationic species 

In Table 3, the CO stretching frequencies for the tungsten and molybdenum Tpm complexes 

with hydrido, iodo, and bromide ligands are shown. For [TpmW(CO)3H][BF4], the CO stretching 

frequencies are observed at 2022, 1935, and 1912 cm-1, for [TpmW(CO)3I][I], the CO stretching 



frequencies are observed at 2036, 1960, and 1928 cm-1, and in [TpmW(CO)3Br][Br], the CO 

stretching frequencies are observed at 2045, 1966, and 1925 cm-1. For all four series, it is evident  

that the bromo complex has the highest CO stretching frequencies. The CO stretching 

frequencies for the iodo complex are observed at lower wave numbers, and the CO stretching 

frequencies for the hydrido complex are observed at the absolute lowest wave numbers. Among 

the three ligands, the electronegativity of these ligands decreases from bromine, to iodine, to 

hydrogen. It is observed that the complex with the highest CO stretching frequencies also has the 

most electronegative ligand. Therefore, it is shown that by increasing or decreasing the 

electronegativity of coordinated ligands, the CO stretching frequencies observed from the 

complex will increase or decrease as well, respectively.   

For [TpmMo(CO)3H][BF4], the CO stretching frequencies are observed at 2029, 1939, and 1921 

cm-1, for [TpmMo(CO)3I][I], the CO stretching frequencies are observed at 2044, 1976, and 

1945 cm-1, and in [TpmMo(CO)3Br][Br], the CO stretching frequencies are observed at 2056, 

1989, and 1946 cm-1. These Tpm molybdenum complexes follow similar trends as seen with the 

Tpm tungsten complexes. For the molybdenum series, it is seen that the bromo complex has the 

highest CO stretching frequencies, the iodo complex has CO stretching frequencies at lower 

wave numbers, and the hydrido complex has CO stretching frequencies observed at the lowest 

wave numbers.  

For [Tpm′W(CO)3H][BF4], the CO stretching frequencies are observed at 2012, 1927, and 1893 

cm-1, for [Tpm′W(CO)3I][I] the CO stretching frequencies are observed at 2054, 2032, and 1931 

cm-1, and in [Tpm′W(CO)3Br][Br] the CO stretching frequencies are observed at 2036, 1958, and 

1928 cm-1. The trends seen in the Tpm′ tungsten series follow those which were observed for 

both the Tpm tungsten and Tpm molybdenum series.  



For [Tpm′Mo(CO)3H][BF4], the CO stretching frequencies are observed at 2020, 1938, and 1918 

cm-1, for [Tpm′Mo(CO)3I][I] the CO stretching frequencies are observed at 2043, 2019, and 1956 

cm-1, and in [Tpm′Mo(CO)3Br][Br] the CO stretching frequencies are observed at 2048, 1973, 

and 1952 cm-1.  

 

NMR Analysis of Tpm metal complexes: The 1H NMR signals for the series of Tpm, Group 6, 

tricarbonyl complexes were obtained in CD2Cl2 relative to a TMS standard. For each of the 

complexes, whether neutral or cationic, the pyrazole rings of the Tpm ligands in the 1H NMR are 

detected as equivalent, as is observed similarly for the closely related Tp and Tp′ species.4 

Among both neutral and cationic complexes, the chemical shifts for the hydrogens in the 4 

position of the pyrazole rings are observed anywhere from 5 ppm to 6.5 ppm. The hydrogens in 

the 3 or 5 positions of the pyrazole rings, if present, are observed anywhere from 8 ppm to 9 

ppm, and the hydrogens of the methyl groups on the Tpm′ and TpmMe pyrazole rings are 

observed anywhere from 2 ppm to 3 ppm. The 1H NMR signals for all of the hydrogens except 

for the central hydrogen had minimal variability, resulting in conclusive evidence that these 

hydrogens were negligibly affected by changes in the metal center, Tpm analog, or charge of the 

metal complex.  

 

 However, it was observed that the central tetrahedral hydrogen exhibited very unusual 

patterns in the 1H NMR spectra. Among the cationic hydrido, bromo, and iodo derivatives of 

TpmM(CO)3 complexes, the central tetrahedral hydrogen exhibited extremely large chemical 

shift differences among all three complexes.6 It was noted that the more electronegative the 

ligand, the greater the downfield shift of the hydrogen on this carbon. In previous works, the 



complex of interest utilized the Tp ligand, and the hydrogen of interest was on a boron instead of 

a carbon and was therefore unobservable in the 1H NMR, allowing for no comparable trends to 

be seen. These experiments, therefore, were focused on whether the large chemical shift 

differences observed by Dilsky for the central hydrogen on the original Tpm metal complexes 

would also be seen for Tpm metal complexes utilizing other Tpm analogues, such as Tpm′ and 

TpmMe. The central hydrogen was indeed observed to exhibit the same significant chemical shift 

differences reported by Dilsky for the bromide, iodide, and hydride derivatives for the Tpm 

complex. (Table 4). 

 

 [TpmM(CO)3Br]+ [TpmM(CO)3I]+ [TpmM(CO)3H]+ 

W 13.1 ppm 11.4 ppm 9.56 ppm 

Mo 12.8 ppm 11.9 ppm 9.54 ppm 

 [Tpm’M(CO)3Br]+ [Tpm’M(CO)3I]+ [Tpm’M(CO)3H]+ 

W 8.03 ppm 7.99 ppm 8.09 ppm 

Mo 8.16 ppm 8.14 ppm 8.03 ppm 

 [TpmMeM(CO)3Br]+ [TpmMeM(CO)3I]+ [TpmMeM(CO)3H]+ 

W Not Synthesized 8.67 ppm 8.26 ppm 

Table 4: 1H NMR (CD2Cl2) chemical shift values for bromide, iodide, and hydride derivatives of 

varying Tpm tungsten and molybdenum complexes.  

 

 Although there were significant chemical shift differences obtained for the central 

hydrogen of the Tpm metal complexes, substantial differences were not seen for the Tpm′ or the 

two TpmMe complexes synthesized. The downfield chemical shift of the hydrogen for the central 



hydrogen of the Tpm′ complex was consistent for all three cationic species, with the NMR signal 

ranging from 7.9 ppm to 8.1 ppm. For the TpmMe complexes, the NMR signal was seen to shift 

from 7.8 for the neutral species, to 8.3 for the hydride species, and to 8.7 for the iodide species. 

The changes in chemical shifts for the TpmMe complexes were observed to not be as drastic as 

previously seen with the Tpm metal complexes. However, there was a much more significant 

difference in the chemical shifts than what was seen for the Tpm′ metal complexes, which was 

informative that the total electron density of the metal complex might be contributing to the 

change in the NMR signal for the central hydrogen. It has been documented that for 

pyrazolylborate ligands, Tp′ is a much more electron rich ligand than Tp. While the Tpm ligands 

have not been as extensively studied, through the CO stretching frequencies, it is known that 

Tpm′ is an overall more electron rich ligand than Tpm. In the far less electron rich Tpm 

complexes, when an electronegative substituent is present on the metal, enough electron density 

is pulled from the Tpm ligand to impact the electronic environment of the central hydrogen. 

Since both the Tpm′ and TpmMe ligands are more electron rich than the Tpm counterpart, the 

same impact on the central hydrogen is not observed as evidenced from the NMR.  

 

 

Conclusion 

 Throughout this work with the Tpm and Tpm derivative metal complexes, it was found 

that both the electronegativity of the newly coordinated anionic ligand as well as the total 

electron density of the transition metal complex were the largest factors contributing to the 

chemical shift effects of the central tetrahedral hydrogen. In the future, more work will be done 

to further characterize more Tpm derivative metal complexes, such as the TpmPh and TpmMe 



metal complexes. Also, more Tpm derivatives will be synthesized, such as a Tpm derivative with 

an acetyl functional group present.   
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