344,672 research outputs found
Critical market shares for investors and access seekers and competitive models in fibre networks
In this paper we consider and evaluate NGA architectures which meet the foreseeable future bandwidth demand and allow for highest bandwidth and quality for end-users and which no longer rely on copper cable elements. These are FTTH architectures only. From all available FTTH architectures we concentrate on the two most relevant architectures in Europe, Ethernet Point-to-Point and GPON. We assume the incumbent to be the investor in the NGA network infrastructure. If the NGA architecture is based on a Point-to-Point fibre plant we have modelled the competitors as using unbundled fibre loops as the wholesale access service. If the architecture is based on a Point-to-Multipoint fibre plant, we consider an active wholesale access (bitstream access) at the MPoP or at the core network node locations. Our basic modelling relies upon an engineering bottom-up cost modelling approach. We model the total cost of the services considered under efficient conditions, taking into account the cost of all network elements needed to produce these services in the specific architecture deployed. This approach is coherent with a Long Run Incremental Cost approach as applied in regulatory economics. Our modelling approach generates a broad set of results including the relative performance of the various network architectures, investment requirements and the degree of profitable coverage. In this paper, however, we focus on the results on the potential for competition and potential market structures in an NGA environment. --NGA architecture,cost modelling,FTTH,coverage,access models,unbundling
Spatial-temporal data modelling and processing for personalised decision support
The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less
Keywords
Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio
DISCUS: the distributed core for ubiquitous broadband access
A new end to end architecture based on Long-Reach Passive Optical
Network (LR-PON) with wireless integration, a distributed core built of optical
transparency islands and an OpenFlow-based control plane, which is being
developed in the EU project DISCUS, is described in this paper. The main
technological advances and the network modelling and optimization approach are reported
Tree Memory Networks for Modelling Long-term Temporal Dependencies
In the domain of sequence modelling, Recurrent Neural Networks (RNN) have
been capable of achieving impressive results in a variety of application areas
including visual question answering, part-of-speech tagging and machine
translation. However this success in modelling short term dependencies has not
successfully transitioned to application areas such as trajectory prediction,
which require capturing both short term and long term relationships. In this
paper, we propose a Tree Memory Network (TMN) for modelling long term and short
term relationships in sequence-to-sequence mapping problems. The proposed
network architecture is composed of an input module, controller and a memory
module. In contrast to related literature, which models the memory as a
sequence of historical states, we model the memory as a recursive tree
structure. This structure more effectively captures temporal dependencies
across both short term and long term sequences using its hierarchical
structure. We demonstrate the effectiveness and flexibility of the proposed TMN
in two practical problems, aircraft trajectory modelling and pedestrian
trajectory modelling in a surveillance setting, and in both cases we outperform
the current state-of-the-art. Furthermore, we perform an in depth analysis on
the evolution of the memory module content over time and provide visual
evidence on how the proposed TMN is able to map both long term and short term
relationships efficiently via a hierarchical structure
Modeling and visualizing networked multi-core embedded software energy consumption
In this report we present a network-level multi-core energy model and a
software development process workflow that allows software developers to
estimate the energy consumption of multi-core embedded programs. This work
focuses on a high performance, cache-less and timing predictable embedded
processor architecture, XS1. Prior modelling work is improved to increase
accuracy, then extended to be parametric with respect to voltage and frequency
scaling (VFS) and then integrated into a larger scale model of a network of
interconnected cores. The modelling is supported by enhancements to an open
source instruction set simulator to provide the first network timing aware
simulations of the target architecture. Simulation based modelling techniques
are combined with methods of results presentation to demonstrate how such work
can be integrated into a software developer's workflow, enabling the developer
to make informed, energy aware coding decisions. A set of single-,
multi-threaded and multi-core benchmarks are used to exercise and evaluate the
models and provide use case examples for how results can be presented and
interpreted. The models all yield accuracy within an average +/-5 % error
margin
Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling
Identifying a coupled dynamical system out of many plausible candidates, each
of which could serve as the underlying generator of some observed measurements,
is a profoundly ill posed problem that commonly arises when modelling real
world phenomena. In this review, we detail a set of statistical procedures for
inferring the structure of nonlinear coupled dynamical systems (structure
learning), which has proved useful in neuroscience research. A key focus here
is the comparison of competing models of (ie, hypotheses about) network
architectures and implicit coupling functions in terms of their Bayesian model
evidence. These methods are collectively referred to as dynamical casual
modelling (DCM). We focus on a relatively new approach that is proving
remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid
evaluation and comparison of models that differ in their network architecture.
We illustrate the usefulness of these techniques through modelling
neurovascular coupling (cellular pathways linking neuronal and vascular
systems), whose function is an active focus of research in neurobiology and the
imaging of coupled neuronal systems
Spatial-temporal data modelling and processing for personalised decision support
The purpose of this research is to undertake the modelling of dynamic data without losing any of the temporal relationships, and to be able to predict likelihood of outcome as far in advance of actual occurrence as possible. To this end a novel computational architecture for personalised ( individualised) modelling of spatio-temporal data based on spiking neural network methods (PMeSNNr), with a three dimensional visualisation of relationships between variables is proposed. In brief, the architecture is able to transfer spatio-temporal data patterns from a multidimensional input stream into internal patterns in the spiking neural network reservoir. These patterns are then analysed to produce a personalised model for either classification or prediction dependent on the specific needs of the situation. The architecture described above was constructed using MatLab© in several individual modules linked together to form NeuCube (M1). This methodology has been applied to two real world case studies. Firstly, it has been applied to data for the prediction of stroke occurrences on an individual basis. Secondly, it has been applied to ecological data on aphid pest abundance prediction. Two main objectives for this research when judging outcomes of the modelling are accurate prediction and to have this at the earliest possible time point. The implications of these findings are not insignificant in terms of health care management and environmental control. As the case studies utilised here represent vastly different application fields, it reveals more of the potential and usefulness of NeuCube (M1) for modelling data in an integrated manner. This in turn can identify previously unknown (or less understood) interactions thus both increasing the level of reliance that can be placed on the model created, and enhancing our human understanding of the complexities of the world around us without the need for over simplification. Read less
Keywords
Personalised modelling; Spiking neural network; Spatial-temporal data modelling; Computational intelligence; Predictive modelling; Stroke risk predictio
- …
