5,259,487 research outputs found

    Implementation and Initial Foci

    Get PDF
    Recommendations by th

    Distributed agent-based building evacuation simulator

    Get PDF
    The optimisation of the evacuation of a building plays a fundamental role in emergency situations. The behaviour of individuals, the directions that civilians receive, and the actions of the emergency personnel, will affect the success of the operation. We describe a simulation system that represents the individual, intelligent, and interacting agents that cooperate and compete while evacuating the building. The system also takes into account detailed information about the building and the sensory capabilities that it may contain. Since the level of detail represented in such a simulation can lead to computational needs that grow at least as a polynomial function of the number of the simulated agents, we propose an agent-oriented Distributed Building Evacuation Simulator (DBES). The DBES is integrated with a wireless sensor network which offers a closed loop representation of the evacuation procedure, including the sensed data and the emergency decision making

    Mathematical Modeling Of Horizontal Displacement Of Above-ground Gas Pipelines

    Full text link
    The modern geodetic equipment allows observations as soon as possible, providing high accuracy and productivity. Achieving high accuracy of measurement is impossible without taking into account external factors that create influence on an observation object. Therefore, in order to evaluate an influence of thermal displacement on the results of geodetic monitoring a mathematical model of horizontal displacement of above-ground pipelines was theoretically grounded and built. In this paper we used data of experimental studies on the existing pipelines "Soyuz" and "Urengoy - Pomary - Uzhgorod". Above-ground pipeline was considered as a dynamic system "building - environment". Based on the characteristics of dynamic systems the correlation between the factors of thermal influence and horizontal displacement of the pipeline axis was defined.Establishing patterns between input factors and output response of the object can be useful not only for geodetic control, but also for their consideration in the design of new objects. It was investigated that the greatest influence on the accuracy of geodetic observations can create dispersion of high-frequency oscillations caused by daily thermal displacement. The magnitude of displacement exceeds actual measurement error.The article presents the results of calculation of high-frequency oscillations of above-ground gas pipeline.The result made it possible to substantiate the accuracy and methodology of geodetic observations of the horizontal displacement of pipeline axes taking into account an influence of cyclical thermal displacement.Research results were recommended for use in practice for enterprises that serve the main gas pipelines and successfully tested by specialists of PJSC "Ukrtransgaz" (Kharkiv, Ukraine) during the technical state control of aerial pipeline crossing in Ukraine and also can be used to form the relevant regulations

    Modeling high-performance wormhole NoCs for critical real-time embedded systems

    Get PDF
    Manycore chips are a promising computing platform to cope with the increasing performance needs of critical real-time embedded systems (CRTES). However, manycores adoption by CRTES industry requires understanding task's timing behavior when their requests use manycore's network-on-chip (NoC) to access hardware shared resources. This paper analyzes the contention in wormhole-based NoC (wNoC) designs - widely implemented in the high-performance domain - for which we introduce a new metric: worst-contention delay (WCD) that captures wNoC impact on worst-case execution time (WCET) in a tighter manner than the existing metric, worst-case traversal time (WCTT). Moreover, we provide an analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors. Building on top of our WCD analytical model, we analyze the impact on WCD that different design parameters such as the number of virtual channels, and we make a set of recommendations on what wNoC setups to use in the context of CRTES.Peer ReviewedPostprint (author's final draft

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general

    A formal theory of conceptual modeling universals

    Get PDF
    Conceptual Modeling is a discipline of great relevance to several areas in Computer Science. In a series of papers [1,2,3] we have been using the General Ontological Language (GOL) and its underlying upper level ontology, proposed in [4,5], to evaluate the ontological correctness of conceptual models and to develop guidelines for how the constructs of a modeling language (UML) should be used in conceptual modeling. In this paper, we focus on the modeling metaconcepts of classifiers and objects from an ontological point of view. We use a philosophically and psychologically well-founded theory of universals to propose a UML profile for Ontology Representation and Conceptual Modeling. The formal semantics of the proposed modeling elements is presented in a language of modal logics with quantification restricted to Sortal universals
    corecore