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Abstract—Manycore chips are a promising computing platform
to cope with the increasing performance needs of critical real-
time embedded systems (CRTES). However, manycores adoption
by CRTES industry requires understanding task’s timing behav-
ior when their requests use manycore’s network-on-chip (NoC)
to access hardware shared resources. This paper analyzes the
contention in wormhole-based NoC (wNoC) designs – widely
implemented in the high-performance domain – for which we
introduce a new metric: worst-contention delay (WCD) that
captures wNoC impact on worst-case execution time (WCET) in
a tighter manner than the existing metric, worst-case traversal
time (WCTT). Moreover, we provide an analytical model of the
WCD that requests can suffer in a wNoC and we validate it
against wNoC designs resembling those in the Tilera-Gx36 and
the Intel-SCC 48-core processors. Building on top of our WCD
analytical model, we analyze the impact on WCD that different
design parameters such as the number of virtual channels, and
we make a set of recommendations on what wNoC setups to use
in the context of CRTES.

I. INTRODUCTION

Manycore chips can accommodate high task counts in a
single hardware device which helps reducing size, weight
and power costs in Critical Real-Time Embedded Systems
(CRTES). The deployment of manycores as baseline comput-
ing platform in CRTES requires a means for the safe con-
solidation of multiple CRTES applications on the same chip.
In that respect, one of the stumbling blocks in the manycore
adoption in CRTES is understanding how manycore internal
complexity affects tasks’ timing behavior. The interconnection
network is, arguably, one of the manycore shared resources
with highest impact on timing. Unlike multicores, which use a
centralized interconnect (e.g. a bus) to access hardware shared
resources, manycores implement networks-on-chip (NoC). In
NoCs, requests are arbitrated in a distributed manner at various
routers severely complicating timing analysis.

In the high-performance domain, wormhole NoCs (wNoCs)
are well understood [9] [12] and used in several Commercial-
Off-The-Shelf (COTS) products [30] [36]. The high-
throughput and low-hardware cost features of wNoCs make
them attractive for CRTES as an alternative to real-time
customized networks whose adoption in commercial products
is harder to achieve. In this respect, this paper addresses
the problem of whether high-performance wNoC designs can
be used to consolidate, in a trustworthy manner, multiple
CRTES applications into a single manycore. This requires
providing high-performance and isolation among tasks so that

time composable WCET estimates [27] (independent of the
load that co-running tasks put on the NoC) can be derived.

We take time composability as a premise in CRTES de-
sign since it enables two fundamental properties to reduce
system development and deployment costs: incremental de-
velopment and incremental verification of integrated systems
(e.g. IMA [4], [37], AUTOSAR [5]). During system devel-
opment, the ability to incrementally integrate applications
without the need of regression tests to validate the timing
properties of already-integrated applications heavily reduces
integration costs. At system deployment, the ability to update
functions and their associated software, without the need for
re-analyzing and re-certifying the system, is vital in domains
like space where systems operate during dozens of years and
whose functionality is usually updated once deployed.

We propose an analytical model that captures the impact of
the different wNoC design choices and parameters on WCET
estimates. Our goal is to adhere to existing COTS wNoC
designs without the need of adding extra hardware support.
In particular, we make the following contributions:
(1) We introduce worst-contention delay (WCD) as a new
metric to accurately capture the impact of wNoC inter-task
interferences on WCET estimates (Section III). WCD takes
into account the pipelined behavior of wNoCs, leading to
tighter WCET estimates compared to the ones obtained with
the Worst-Case Traversal Time (WCTT) [29] [19] [28] [8].
(2) We provide a taxonomy of wNoC design parameters
(Section IV), identifying those that have to be fixed in order to
provide trustworthy and composable WCD bounds; and those
where some flexibility is allowed. We show that the default
values for some of the latter set of parameters are configured
to improve average performance, increasing WCD bounds.
(3) We derive an analytical model for time-composable WCD
bounds in a wNoC (Section V), covering a vast set of parame-
ters including flits-per-packet, number of virtual channels and
queue size in the router1. Our model achieves high coverage of
existing COTS high-performance wNoC designs. We discuss
static virtual channel allocation and show that it has to be
applied smartly to reduce WCD bounds. Otherwise, it can
result in an increase in WCD bounds, e.g, using virtual

1We consider arbitration, routing and virtual-channel allocation policies,
to be configurable from software similarly to the way cache replacement
is currently adjustable in high-performance architectures. This is in contrast
to hardware proposals that require global changes like, new signals among
routers and nodes, different flow-control, global clocks or the like.
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channels to separate the traffic generated by applications under
different criticality levels increases WCD bounds and hence
WCET estimates. Further, in Section VI, we discuss the impact
of various wNoC parameters on system design.
(4) We assess the accuracy of our analytical model on two
wNoC setups resembling the ones deployed in real processors:
the Tilera-Gx36 [36] and the 48-core Intel SCC [30] (Sec-
tion VII). In all cases, our WCD estimates tightly upperbound
the measured contention delay values with up to 5% over-
estimation on average. Further, we show that on average, WCD
bounds are 2.7x and 2.94x lower than WCTT bounds for the
Tilera-Gx36 and the Intel SCC setup respectively.

Overall, our analysis shows that simple but effective design
and configuration choices make efficient use of wNoCs in
CRTES possible.

II. BACKGROUND

In CRTES, there are two main ways to handle contention
among accesses to shared hardware resources, including NoCs.
First, the NoC contention is accounted as part of the WCET
estimation process by deriving a time composable bound of the
worst-case traversal time (WCTT). WCTT defines the longest
time a request could take since the moment it is injected
in the NoC by a source node until it is delivered to the
destination node. Alternatively, NoC contention delay that a
task suffers can be handled as part of the worst-case response
time analysis by adding to the task’s execution time in isolation
the contention generated by the flows of its co-running tasks
– which are assumed known at this stage.

Each approach has its own pros and cons: while the latter
enables deriving tighter estimates, since it builds upon the
knowledge of interference generated by the tasks in the
observed task set, it violates time composability. The former,
which is the focus of this paper, maintains time composability
at the expense of higher WCET estimates.

In the next section we propose the use of Worst-Contention
Delay (WCD) instead of WCTT as a way to provide tighter
WCET estimates for the tasks running in the wNoC based
manycore processor.

III. CONTENTION DELAY: A NEW METRIC TO ACCOUNT

FOR THE IMPACT OF NOC ON WCET

Given a task under analysis, we call contention delay (CD)
the delay caused by the other co-running tasks in the access
to the shared NoC. As an alternative to WCTT we introduce
a new metric, called Worst-Contention Delay (WCD), that
captures in a tight manner the impact that accesses to the NoC
have on programs’ execution time and WCET. WCD stands
for the highest impact that a request may have on WCET
due to contention in the NoC. It stems from the appreciation
that requests can suffer two types of delays: intra-task delay
(atd) that is caused among requests coming from the same
core; and inter-task delay (etd) that covers the delay that one
request from a core causes on the request of a different core.

We illustrate the difference between WCD and WCTT with
the example in Figure 1. Figure 1(a) shows a simple NoC

connecting three cores, out of which one is the destination
core (𝑐2). Our focus is determining the delays suffered by
the requests from core 𝑐0 when accessing the NoC. An
arbiter, which implements round-robin policy, handles requests
coming from 𝑐0 and 𝑐1, with separate buffers to handle the
requests of 𝑐0 and 𝑐1.

The time diagram in Figure 1(b) shows the actual traversal
time and the actual contention delay suffered by requests 𝑟00 -
𝑟40 sent from 𝑐0 (upper time diagram) and 𝑟01 - 𝑟41 sent from 𝑐1
(lower time diagram with grey background) when cores inject
packets at the maximum rate. In absence of interference, we
assume that a request takes 1 cycle to traverse the router, and
that buffers can store up to 2 requests. In the time diagram,
𝐼 stands for the cycle when the request is transferred from
𝑐0 to the buffer and 𝐶𝑋 the cycle when the request is sent
from the router (eXits) to the target node 𝑐2. 𝐵𝑎 corresponds
to cycles when the request is in the buffer but not at the top,
hence suffering atd. Likewise, 𝐵𝑒 corresponds to cycles when
the request is at the top of the buffer and hence suffering etd
since the arbiter grants access to 𝑐1.

We assume that first request of 𝑐0 lost the arbitration in
Cycle 1 so that it has to wait for a request of 𝑐1 to traverse
the router. We observe that request 𝑟00 only suffers etd. 𝑟10
enters in the second entry of the buffer in cycle 1 (𝑐𝑦𝑐1), in
𝑐𝑦𝑐2 it suffers atd and reaches the top of the buffer in 𝑐𝑦𝑐3
where it suffers a cycle of etd. We observe a similar behavior
for other requests, with the difference that when there are two
requests in the buffer, 𝑐0 has to wait until one is released
before sending another request.

The two columns on the right of the time diagram show the
interference cycles for traversal time (cTT) and for contention
delay (cCD) metrics. For the traversal time the interference cy-
cles suffered by 𝑟00 - 𝑟40 are 2, 3, 4, 4, 4 respectively. Meanwhile
for the contention delay they are 1, 1, 1, 1, 1. The key appre-
ciation is that with traversal time the interference accounted
for each request covers both atd (Ba) and etd (Be). However,
the impact of 𝐵𝑎 for one request is already accounted as part
of the 𝐵𝑒 of another request. For instance, the atd suffered
by 𝑟20 in 𝑐𝑦𝑐3 is the etd suffered by 𝑟10 . Overall, the main
problem with traversal time is that it doesn’t capture well
the pipelined behavior of the NoC and that the same cycle
can be accounted several times as contention, either intra- or
inter-task, in different requests. Contention delay instead, only
focuses on inter-task contention and does not over-account
atd and etd cycles. Therefore, considering 𝑊𝐶𝑇𝑇 as the
extra delay that each request suffers due to contention in the
NoC can be (very) pessimistic. Instead,𝑊𝐶𝐷 provides tighter
estimates since it prevents requests to account for multiple
atd interference delays as shown in Figure 1. Our results
in Section VII show that for a wide range of NoCs WCD
tightly and trustfully upperbounds the impact of inter-task
interferences in wNoCs.

Properties. WCD shows a few interesting properties:
i) Larger buffers increase the atd since a request has to
potentially wait for a higher number of requests coming from
the same core. This translates on the fact that larger buffers
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Fig. 1. Simple router and the impact of atd and etd on traversal time and contention delay.

lead to higher WCTT. This is counterintuitive since the more
the resources of the wNoC, in the form of larger buffers, the
worse the WCTT is. WCD is immune to this as it is not
affected by the buffer size, which enables use of wNoCs with
larger buffers in real-time domain with benefits for average
performance of the wNoC.

Time diagrams in Figure 1(c) show the behavior or previ-
ously discussed sequences of requests from cores 𝑐0 and 𝑐1,
if we increase the sizes of input buffers in the router to 3.
This change doesn’t affect execution time of the sequence nor
contention delay. However, it shows an increase in traversal
time for some requests, e.g. for 𝑟40 it grows from 4 to 6.
ii) Solutions based on limiting the injection rate at hard-
ware [19] or software-level [20] effectively reduce atd since
requests are injected into the wNoC at a lower rate and so
fewer conflicts occurs. In the extreme case, these technique
can prevent flows from having more than one packet in any
single router, completely removing the atd but jeopardizing the
wNoC utilization. While this reduces the problem of atd ac-
counting for WCTT, WCD completely removes atd providing
tighter bounds, without any impact on average performance.
iii) WCD leads to tighter WCET estimates than WCTT since
the atd a request suffers occurs in parallel to the etd for other
requests, which is already captured by WCD.

Assumptions. WCD applies to processors free of timing
anomalies such that increasing the local delay suffered by
any request leads to an increase in execution time by at
most the magnitude of the local delay. In particular, by
increasing contention delay by 𝑑 cycles, execution time grows
by up to 𝑑 cycles. Further, WCD applies to network designs
implementing back pressure flow-control policies i.e. NoC
designs with no packet loss such as wormhole and virtual cut-
through [9]. WCD works for work-conserving policies such
as round-robin so that links are never left idle if there are
pending requests.

IV. NOC PARAMETERS TAXONOMY

This section presents a taxonomy of wNoC parameters.
We consider a mesh network topology as it is the most
common topology used in wNoCs, though the analytical model

TABLE I
SUMMARY OF MAIN SYMBOLS USED

Symbol Description
𝑉 𝐶 Virtual Channel
𝑊𝐶𝐷 Time-composable upper bound to contention delay
𝐹𝑖 Packet stream traversing the same source-destination route and requir-

ing the same grade of service along the path.
𝐻𝑖 Number of hops in a flow 𝐹𝑖

𝑅𝑗
𝑖 Router (hop) 𝑗 in a flow 𝐹𝑖 (see Figure 2(a))

𝑟𝑘𝑖 Packet (request) k in a flow 𝐹𝑖

𝐿𝑓𝑙𝑖𝑡𝑠 Number of flits of a packet
𝑃 𝑗

𝑖 Number of ports in router 𝑅𝑗
𝑖

𝑁𝑅𝑗
𝑖 Number of queues that can potentially contend for an output port that

𝐹𝑖 is targeting at 𝑅𝑗
𝑖

𝜔(𝑖, 𝑗) Function that returns the index 𝑥 of the worst possible destination
flow 𝐹𝑥 that starts at the hop 𝑅𝑗+1

𝑖 and reaches the worst possible
destination in terms of indirect blocking of packets of flow 𝐹𝑖

presented in this paper also applies to other network topologies
(e.g. torus) by simply varying some parameters such as the
number of ports per node. Table I lists the symbols and the
corresponding description used in the rest of the paper. In this
paper we distinguish between the 𝑊𝐶𝐷, which corresponds
to the actual worst contention delay a NoC request may suffer
due to interferences with other requests, and the𝑊𝐶𝐷, which
corresponds to an upper-bound of the actual𝑊𝐶𝐷 derived by
our analytical model.

A. Wormhole mesh NoC fundamentals

In our reference NxM mesh wNoC configuration, depicted in
Figure 2(a), each node comprises a PME (Processor/Memory
element) and a router that communicates with the rest of
nodes. The PME can be either a processor core, a cache
memory, main memory, I/O, etc. In the network several traffic
flows (𝐹𝑖) may be active at the same time. Each node can
be identified using (𝑥, 𝑦) coordinates. The router located at
coordinates (𝑥, 𝑦) is referred to as 𝑅(𝑥, 𝑦).

Routing decides the path that a packet follows within the
network, and consequently, the number of routers or hops (ℎ),
a given flow requires to move from a source to a destination
node. Hence, a router can also be identified as 𝑅𝑗

𝑖 , in which 𝑗
represents the hop 𝑗 of flow 𝐹𝑖, when moving to its destination.
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Fig. 2. Mesh basics. (a) Router coordinates in a 4x4 part of a mesh. (b)
Canonical 2D-mesh router.

Communication flows comprise multiple NoC packets or
requests. We refer to the 𝑘-th packet generated by flow 𝐹𝑖 as
𝑟𝑘𝑖 . A packet is the minimum arbitration unit in the network
and it can be split into one or several flits (short of control
flow units). Flits can be further decomposed into smaller units
called phits when available link wires cannot accommodate an
entire flit. For the sake of clarity in the equations we consider
equal phit and flit sizes. The first flit of a packet is called
header flit and contains the information required to forward
the packet to the destination.

We consider a canonical 5-port2 2D mesh router architecture
in which input ports have a queue to store packet flits (see
Figure 2(b)). In order to alleviate the contention caused by
flows going to different destinations, high performance NoCs
multiplex physical channels using virtual channels (VC). To
do so, an input queue resource per port is assigned to a virtual
channel. In a canonical wormhole router with virtual channels,
two rounds of arbitration are performed. The first selects the
input port that is granted access to a given output port and the
second one selects the virtual channel (queue) that is selected
in a given input port. In the case of a router without virtual
channels the latter arbitration is not required.

Routers are usually pipelined in multiple stages, e.g. the
Intel SCC [30] comprises routers with an input buffer, routing
of the header flit, switch allocation and link traversal stages.
The header flit is the only one arbitrated from a packet and
once it is granted access to a given output port this connection
remains established until the entire packet leaves the router.

When a header flit arrives at an input port of 𝑅𝑗
𝑖 , this

flit is stored in the corresponding queue. Next, the routing
determines the next hop router, 𝑅𝑗+1

𝑖 , and the router allocates
an entry queue in 𝑅𝑗+1

𝑖 . Once the router in the next hop can
accept the header flit, it competes for an output port and
traverses the router crossbar. Once a header flit is granted
access to a given output port, the remaining flits of the packet

2In order to simplify our formulation we assume that all routers, including
those at the edges, have the same number of ports, which in our case is 5.
We could consider that some routers (e.g. those at the edges) may have fewer
ports, which would decrease the WCD. However, for the sake of clarity and
due to space limitations to extend equations we stick to 5-port routers for
meshes as the ones used in Tilera chip [36].

TABLE II
LIST OF WNOC MAIN FEATURES ANALYZED

ID Feature Comment

- Routing
Fixed to achieve time analyzability.
Static (e.g. XY routing)

- Flow control No impact. Credit-based or stall-and-go.
- Arbitration Fixed to achieve time analyzability
- Switching Fixed to wormhole (widely implemented).

cF Number of flows Limited by static routing.
nVC No. of queues per input port 𝑛𝑉 𝐶 = 1 or (1 < 𝑛𝑉 𝐶 < 𝑐𝐹 )

E Entries per queue < 1 packet, = 1 packet or > 1 packet
S Packet size Single or Multiple

FT Flits per Packet = 1 or > 1

are forwarded to this port without any further arbitration.
However, contention may cause the header flit to be stalled.

When this happens, the remaining flits of the packet are also
stalled. One of the causes of stalls is the finite size of queues
in input ports. In wNoCs, the minimum allowable queue size
is one flit. In any case, queues are typically sized with enough
space to avoid bubbles in the packet transmission. For instance,
if the time required to know if there is enough space in the
next router queue is equal to one cycle, the queue needs to
have a minimum size of two flits to avoid bubbles. The latency
experienced by a packet to traverse the network from source
to destination in the absence of contention is usually referred
to as zero-load latency (zll).

B. Proposed Taxonomy

The main properties the wNoC needs to provide in order
to be used in real-time systems are (i) time analyzability, i.e.
enabling the derivation of as tight as possible contention delay
bounds, and (ii) time composability, i.e. making contention
delay bounds independent of the load that co-runners put on
the wNoC. This translates into deriving the trustworthy upper-
bound to the highest possible contention delay (𝑊𝐶𝐷𝑖) a
communication flow 𝐹𝑖 of a given task can suffer due to
conflicts with other task’s flows. In the following we show
how different wNoC parameters impact 𝑊𝐶𝐷𝑖. Table II
summarizes the wNoC features we analyze.

Fixed parameters. Some wNoC parameters are usually
constrained to enable time analyzability and composability:

Routing determines the flows that potentially contend with
𝐹𝑖 at a given router. Deterministic routing is shown to provide
time analyzability [29]. Hence, for our mesh analysis we use
XY as it is the preferred solution for routing in regular NoCs
due to its low implementation cost. With XY routing packets
are forced to use the X dimension first: In the 𝑋 dimension
the position of the target node with respect to the source node
determines whether to go right (X+) or left (X-) direction. The
same approach is used for the 𝑌 dimension. Once a packet
is routed using the 𝑌 dimension, it cannot be forwarded back
to the 𝑋 dimension. These routing restrictions determine the
maximum number of flows contending with 𝐹𝑖 at a given
router for an output port. Note that the opposite port of a
given input/output port is represented as 𝑌 and 𝑋̄ .

Note that our analysis can be extended for any other
deterministic routing policy. In order to do so, one should



recompute the maximum number of flows contending with 𝐹𝑖
at a given router for an output port according to that particular
routing policy.

Flow control determines how packets traverse the routers.
In the context of wormhole switching, back pressure flow
control can be based either on the use of credits or stall-
&-go signals. In this paper we provide expressions assuming
the most common case that the flow control mechanism is
designed in such a way that no bubbles occur in the packet
transmission. However, the impact of bubbles on contention
delay can be easily accounted for by considering that a bubble
in the transmission is equivalent to increasing packet size by
one flit.

Active nodes. In order to achieve time composable con-
tention delay bounds, no assumptions can be made on the
particular active flows in the wNoC. That is, it is assumed
that any node in the network is entitled to send and receive
packets from any other node.

Active flows. Similarly, when computing the contention
delay for a packet, we assume that, by the time it is injected
in the network, any other potential contending flow is also
active at that moment, transmitting its packets in a way that
it produces the worst possible contention scenario. In order to
reproduce the worst possible contention scenario we need to
consider the worst direct contention and the worst indirect
contention [17]. The former can be easily reproduced by
considering that for a packet 𝑟𝑘𝑖 of 𝐹𝑖 at every hop, all possible
contenders (i.e. all queues that can forward a packet to the
requested output port) are also requesting the same output
port. The latter is caused by packets of flows not sharing the
path with 𝐹𝑖 but blocking at least one flow that does share at
least one link in the path with 𝐹𝑖. In the following sections
we derive expressions that account for worst-case contention
considering the impact of both indirect and direct contention.

Output port arbitration. Likewise, packets contending in
a router for a given output port are arbitrated using a time-
analyzable policy. Regular wormhole-based mesh designs like
the ones in [36] [30] use round-robin arbitration. The use
of round-robin arbitration enables the computation of timing
guarantees [15] [24].

Parameters to adjust. Other wNoC parameters have some
flexibility in the values they can take, though each set of pa-
rameters (network parameter configuration) leads to different
contention delay. We study the following set of parameters:
buffer capabilities and number of flits per packet.

The buffering capabilities of the wNoC are further shaped
by two parameters:
∙ The number of queues per input port – which matches
the number of virtual channels – (𝑛𝑉 𝐶). 𝑛𝑉 𝐶 leads to two
scenarios: First, when there is a single queue per input port,
i.e. no virtual channel is implemented, which is referred to
as 𝑛𝑉 𝐶 = 1; second, there are several queues each of
which can – statically or dynamically – hold different flows
(1 < 𝑛𝑉 𝐶 < 𝑐𝐹 ).
∙ The number of entries per queue (𝐸) that can get three
values: it can have the exact size of a packet, given by its

TABLE III
SETUPS

Setup Description
(𝐹𝑇 = 1, 𝑛𝑉 𝐶 = 1, 𝐸 = 1) 1 queue per input port, 1-flit pack-

ets and input queue holds 1 packet
Impact of
VC (𝐹𝑇 = 1, 1 < 𝑛𝑉 𝐶 <

𝑐𝐹,𝐸 = 1)
nVC queues per input port, 1-flit
packets and input queue holds 1
packet

(𝐹𝑇 > 1, 1 < 𝑛𝑉 𝐶 <
𝑐𝐹,𝐸 = 1)

Input queue holds 1 packet that is
multi flit

Impact of
FT and E (𝐹𝑇 > 1, 1 < 𝑛𝑉 𝐶 <

𝑐𝐹,𝐸 > 1)
Input queue holds more more than
1 packet that is multi flit

(𝐹𝑇 > 1, 1 < 𝑛𝑉 𝐶 <
𝑐𝐹,𝐸 < 1)

Input queues cannot store entire
an entire packet that is multi flit

number of flits (𝐸 = 1), be smaller than packet size (𝐸 < 1)
and be larger than packet size (𝐸 > 1).

For the number of flits per packet we consider two cases:
Each packet comprises a single flit (𝐹𝑇 = 1) and each packet
comprises several flits (𝐹𝑇 > 1).

V. TIME-COMPOSABLE WCD BOUNDS

This section provides an analytical model for time-
composable bounds to 𝑊𝐶𝐷 with the ultimate goal of
deriving time-composable bounds to tasks execution time.
Table III presents the different scenarios we analyze in coming
sections. In doing so, we proceed incrementally analyzing the
contention delay affecting packets in the NoC, going from
simple scenarios to more complex and realistic ones.

A. Single-Flit, One Virtual-Channel, Single-entry Queue
(𝐹𝑇 = 1, 𝑛𝑉 𝐶 = 1, 𝐸 = 1)

In this scenario, packets are composed of one single flit
and every router input port has a single-entry queue (no virtual
channel is implemented). The queue stores the requests coming
from all flows sharing it.

Single-router traversal. Let us assume a request 𝑟1𝑖 from a
flow 𝐹𝑖 going from a source node 𝑅1

𝑖 to a destination node 𝑅2
𝑖

that are adjacent in the direction of 𝐹𝑖. In this wNoC setup,
traversing one router is similar to traversing a bus with round
robin arbitration policy [15]. The worst contention delay that
𝑟1𝑖 can experience is:

𝑊𝐶𝐷𝑖 = (𝑁𝑅1
𝑖 − 1)× 𝐿𝑟𝑜𝑢𝑡𝑒𝑟 (1)

𝑁𝑅𝑗
𝑖 is the number of queues contending for an output

port that 𝐹𝑖 is targeting at router 𝑅𝑗
𝑖 . With XY routing if

the destination port is 𝑋+ or 𝑋−, the number of contending
queues is 2 (𝑃𝑀𝐸 and 𝑋̄). If the destination port is 𝑌+ or
𝑌− (or the 𝑃𝑀𝐸) the contending queues are 4: 𝑋+, 𝑋−, 𝑌
and 𝑃𝑀𝐸 (or 𝑋+, 𝑋−, 𝑌+ and 𝑌−). 𝐿𝑟𝑜𝑢𝑡𝑒𝑟 represents the
time a packet requires to cross a non-pipelined router. In the
case of pipelined routers, the pipeline mitigates the impact of
𝐿𝑟𝑜𝑢𝑡𝑒𝑟 and it can be safely assumed 𝐿𝑟𝑜𝑢𝑡𝑒𝑟 = 1. In the rest
of the paper, we make this assumption for the sake of clarity
and readability.

Worst Contention. Contention is caused by packets of
any flow partially sharing the path with 𝐹𝑖. Let’s assume



𝐹𝑖 traverses 𝑅1
𝑖 -𝑅2

𝑖 -𝑅3
𝑖 . When 𝑟1𝑖 is issued from the PME it

enters the arbitration in 𝑅1
𝑖 . In the highest contention scenario

𝑁𝑅1
𝑖 −1 requests with higher priority than 𝑟1𝑖 are ready in 𝑅1

𝑖

per-input-port queue targeting the same output port. For any of
these requests to go through 𝑅1

𝑖 the corresponding input queue
in 𝑅2

𝑖 input port has to be free. In the worst-case situation, the
target input port already contains a packet (𝑟𝑘𝑗 ) from a different
flow, 𝐹𝑗 , and 𝑟𝑘𝑗 shares the same path as 𝑟1𝑖 . Further, all packets
in different input ports in 𝑅2

𝑖 can target the same output port
as 𝑟𝑘𝑗 and have higher priority than 𝑟𝑘𝑗 . Overall, we observe
that 𝑟𝑘𝑗 causes contention on 𝑟1𝑖 despite not contending within
the router 𝑅1

𝑖 as they share at least one link in the path (direct
contention). Additionally, requests not sharing the path with
𝑟1𝑖 can be blocking 𝑟𝑘𝑗 which in turns causes contention in 𝑟11 .
This contention is usually regarded as indirect contention [17].

Worst-Possible Destination. From the previous discussion
it follows that the route followed by 𝑟𝑘𝑗 determines the con-
tention it suffers, so the more hops 𝑟𝑘𝑗 traverses the more the
contention it may suffer, which in turns affects the contention
on 𝑟1𝑖 . In order to account for the worst contention, considering
both indirect and direct contention that any 𝐹𝑖 can suffer at
hop 𝑅𝑗

𝑖 , we introduce the concept of worst-possible destination
flow, 𝐹𝜔(𝑖,𝑗). 𝐹𝜔(𝑖,𝑗) considers the next hop’s input port that a
packet of flow 𝐹𝑖 targets from current hop 𝑅𝑗

𝑖 . The destination
of flow 𝐹𝜔(𝑖,𝑗) is chosen in such a way that causes worst
indirect contention to the packets of flow 𝐹𝑖, i.e. it prevents
packets of 𝐹𝑖 cross the hop 𝑅𝑗

𝑖 for the longest time possible.
The choice of 𝐹𝜔(𝑖,𝑗) depends on the routing algorithm used.

In the wNoC mesh considered in this paper, with XY routing,
the worst destination of flow 𝐹𝜔(𝑖,𝑗) corresponds to the farthest
node that can be reached from the next 𝐹𝑖 hop’s input port3,
depending on the traversing direction.
∙ When the packets of flow 𝐹𝑖 traverse the Y dimension, the
farthest reachable node is the one with highest hop count in
the same direction, since once a packet starts using the Y
direction, it cannot be routed on the X direction again.
∙ When the packets of flow 𝐹𝑖 traverse the X dimension, the
farthest node is the one with highest hop count in X and then
in Y dimension.

Let’s consider the case from Figure 3(a) in which a packet 𝑟𝑖
of flow 𝐹𝑖 is transmitted from router 𝑅(0, 1) to router 𝑅(3, 0)
(represented with a solid arrow in the figure). When the packet
enters in 𝑅1

𝑖 , it waits for an input port to become ready in 𝑅2
𝑖 .

𝑟1𝑖 suffers the longest contention when the packets in the west
input port of 𝑅2

𝑖 target their worst possible destination, i.e
router 𝑅(3, 3) (represented with a flow 𝐹𝜔(𝑖,1), dotted arrow in
the figure). The same worst possible destination is maintained
as the packet traverses 𝑅(1, 1) and 𝑅(2, 1). However, when 𝑟𝑖
reaches router 𝑅(3, 1) as the packet requests the north input
port in router 𝑅(3, 0), the worst possible destination changes.
The reason is because 𝐹𝜔(𝑖,1) considers Y+ but 𝑟𝑖 goes Y-. As

3This assumption is only valid in the case all routers have the same number
of ports. In other cases the worst possible destination is computed iterating
contending flows to the possible destination and selecting the one causing the
highest contention.

(a) (b)

Fig. 3. (a) Worst destination; and (b) A flow crossing 2 routers

a result, a new worst possible destination flow is computed,
i.e. 𝐹𝜔(𝑖,4), marked with a dashed arrow in Figure 3(a).

Computing the time-composable upper bound Worst-
Contention Delay (𝑊𝐶𝐷𝑖). In order to derive the general
𝑊𝐶𝐷𝑖 expression, we first focus on the case of a flow
crossing only two routers as shown in Figure 3(b). Flow 𝐹𝑖
targets next hop’s (𝑅2

𝑖 ) PME. In order to cross router 𝑅1
𝑖 ,

it has to win the arbitration for the east output port of 𝑅1
𝑖 .

To keep time composability we assume that it has the lowest
priority in that arbitration, as shown in Equation 1. We further
assume that each of its contenders in 𝑅1

𝑖 suffers the worst
contention from 𝐹𝜔(𝑖,1) (marked with a dotted arrow in the
figure), which determines the delay suffered by each contender
in the arbitration.

In order to compute the impact that 𝐹𝜔(𝑖,1) has on con-
tenders of 𝐹𝑖, we follow an iterative process, assuming that
𝐹𝜔(𝑖,1) also suffers the worst contention at each hop until
reaching its destination 𝑅3

𝜔(𝑖,1). Thus, the worst contention
for every request going from 𝑅2

𝜔(𝑖,1) to 𝑅3
𝜔(𝑖,1) is 𝑁𝑅3

𝜔(𝑖,1).
Likewise, the contention when going from 𝑅1

𝜔(𝑖,1) to 𝑅2
𝜔(𝑖,1),

is 𝑁𝑅3
𝜔(𝑖,1)×𝑁𝑅2

𝜔(𝑖,1) as it includes the contention of 𝑅2
𝜔(𝑖,1)

when going to 𝑅3
𝜔(𝑖,1).

Overall, the worst contention that 𝐹𝜔(𝑖,1) causes on 𝐹𝑖
contenders at router 𝑅1

𝑖 , includes the arbitration of 𝐹𝜔(𝑖,1) at
router 𝑅1

𝜔(𝑖,1) and is equal to 𝑁𝑅3
𝜔(𝑖,1)×𝑁𝑅2

𝜔(𝑖,1)×𝑁𝑅1
𝜔(𝑖,1).

As in the previous case, it includes the contention of 𝑅1
𝜔(𝑖,1)

when going to 𝑅2
𝜔(𝑖,1) and 𝑅3

𝜔(𝑖,1). Once the impact of 𝐹𝜔(𝑖,1)
is computed, we derive from Equation 1 the contention that
𝐹𝑖 suffers for crossing from 𝑅1

𝑖 to 𝑅2
𝑖 . As a result, the 𝑊𝐶𝐷𝑖

expression when crossing two routers is:

𝑊𝐶𝐷𝑖 = 𝑁𝑅3
𝜔(𝑖,1) ×𝑁𝑅2

𝜔(𝑖,1) ×𝑁𝑅1
𝜔(𝑖,1) × (𝑁𝑅1

𝑖 − 1)

+(𝑁𝑅2
𝑖 − 1) (2)

In the general case, for a packet of an arbitrary flow 𝐹𝑖
injected in an arbitrary node 𝑅1

𝑖 and that it has to cross 𝐻𝑖

other routers (𝑅1, 𝑅2, ... 𝑅𝐻𝑖
) to get to its destination, the

general expression for computing 𝑊𝐶𝐷𝑖 of 𝐹𝑖 is given by:



𝑊𝐶𝐷𝑖 =

𝐻𝑖∑
𝑗=1

⎛
⎝(𝑁𝑅𝑗

𝑖 − 1)×
𝐻𝜔(𝑖,𝑗)∏
𝑚=1

𝑁𝑅𝑚
𝜔(𝑖,𝑗)

⎞
⎠ (3)

where 𝐻𝜔(𝑖,𝑗) is the number of hops in the worst possible
destination flow 𝐹𝜔(𝑖,𝑗). The first multiplicand (𝑁𝑅𝑗

𝑖 − 1)
corresponds to the contention introduced by the round robin
arbitration in each of the routers that the flow 𝐹𝑖 traverses.
The second multiplicand

∏𝐻𝜔(𝑖,𝑗)

𝑚=1 𝑁𝑅𝑚
𝜔(𝑖,𝑗) corresponds to the

indirect contention delay in each hop due to the worst possible
destination flow 𝐹𝜔(𝑖,𝑗). In the rest of the paper, we refer to
the first multiplicand as 𝑟𝑟𝑐𝑜𝑛𝑡, and to the second as 𝑖𝑛𝑑𝑐𝑜𝑛𝑡,

Interestingly, whether or not a node has several requests in
flight has no impact on 𝑊𝐶𝐷, since this only affects atd and
WCD metric is insensitive to atd.

B. Single-Flit, Virtual-Channels, Single-entry Queue
(𝐹𝑇 = 1, 1 < 𝑛𝑉 𝐶 < 𝑐𝐹,𝐸 = 1)

Virtual channels are allocated to flows in a wNoC either
statically or dynamically. With dynamic allocation, virtual
channels are assigned to flows at run-time based on their
availability with the overall goal of maximizing buffer oc-
cupation and consequently, average network throughput. With
static allocation instead, virtual channels are statically assigned
to a given set of flows, such that any of these flows uses the
same virtual channel until reaching the destination, in order
to reduce head-of-line blocking [9]. The way in which each
of the two allocation schemes impacts wNoC contention is as
follows:

For dynamic allocation, at analysis time no assumption can
be made about the particular flows contending at a given router
with 𝐹𝑖. The only safe assumption that can be made is that
all flows can be potentially contending for virtual channel
resources at every router. Hence, dynamic virtual channel
allocation does not help reducing contention delay.

The impact of static virtual channel allocation is more
complex to ascertain. Hence, if we consider terms 𝑟𝑟𝑐𝑜𝑛𝑡 and
𝑖𝑛𝑑𝑐𝑜𝑛𝑡 from Equation 3:
∙ An increase in 𝑛𝑉 𝐶 translates into a increase of 𝑟𝑟𝑐𝑜𝑛𝑡. This
occurs because every arbitration round covers the selection of
a contending port (e.g. for the Y+ output port the contending
input ports are 𝑋+, 𝑋−, 𝑌 and 𝑃𝑀𝐸) and a specific virtual
channel of that port. Hence, the number of contenders within
a router, 𝑁𝑅𝑗

𝑖 , in the presence of 𝑛𝑉 𝐶 virtual channels per
input port, is defined depending on the destination port as
follows:

𝑁𝑅𝑗
𝑖 =

{
𝑛𝑉 𝐶 × 2 𝑖𝑓 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑋+ 𝑜𝑟 𝑋−
𝑛𝑉 𝐶 × 4 𝑖𝑓 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑌+, 𝑌 − 𝑜𝑟 𝑃𝑀𝐸

Note that the expression above generalizes the definition of
𝑁𝑅𝑗

𝑖 presented in Equation 3, which considers no virtual
channels are implemented (𝑛𝑉 𝐶 = 1).
∙ Having more than one virtual channel, if they are smartly
allocated, offers a solution to reduce 𝑖𝑛𝑑𝑐𝑜𝑛𝑡. The achieved

reduction factor, referred to as Δ𝑖𝑛𝑑 (with Δ𝑖𝑛𝑑 ≤ 1), depends
on the particular static allocation used. For instance, let us
assume a wNoC with two virtual channels, one of which is
assigned to packets sent from a given node 𝑅(𝑥, 𝑦) while the
other nodes share the second virtual channel. In this scenario
the packets from 𝑅(𝑥, 𝑦) suffer no indirect contention, i.e.
𝑟𝑟𝑐𝑜𝑛𝑡×Δ𝑖𝑛𝑑 = 1, hence reducing 𝑊𝐶𝐷 since the reduction
is expected to be higher than the increase caused on 𝑟𝑟𝑐𝑜𝑛𝑡.
It is noted that the requests sent from the other nodes suffer a
higher 𝑊𝐶𝐷 since their 𝑖𝑛𝑑𝑐𝑜𝑛𝑡 is not affected while 𝑟𝑟𝑐𝑜𝑛𝑡
increases. Investigating smart static allocation virtual channel
policies is out of the scope of this paper and remains a part
of our future work, in terms of the 𝑊𝐶𝐷 model presented in
this paper we use the terms 𝑁𝑅𝑗

𝑖 and Δ𝑖𝑛𝑑 to factor in these
effects into 𝑊𝐶𝐷. Overall, the general expression for 𝑊𝐶𝐷𝑖

is as follows:

𝑣𝑐𝑊𝐶𝐷𝑖 =𝑊𝐶𝐷𝑖 × 𝑛𝑉 𝐶 ×Δ𝑖𝑛𝑑 (4)

C. Multiple-Flit, Virtual-Channels, Single-entry Queue
(𝐹𝑇 > 1, 1 < 𝑛𝑉 𝐶 < 𝑐𝐹,𝐸 = 1)

In this section we model wNoC contention when packets
can have more than one flit, which are transmitted in a
pipelined fashion. In order to account for the contention delay
introduced by multi-flit packets, we consider 𝐿𝑓𝑙𝑖𝑡𝑖 as the
maximum number of flits a packet of flow 𝐹𝑖 can have.

In a pipelined router, the time that a packet 𝑟𝑘𝑖 is blocked
in 𝑅𝑗

𝑖 is given by the number of queues that can potentially
contend with 𝑟𝑘𝑖 (𝑁𝑅𝑗

𝑖 − 1) and the maximum number of flits
(𝐿𝑓𝑙𝑖𝑡𝑖 ) of the contending requests: (𝑁𝑅𝑗

𝑖 − 1) × 𝐿𝑓𝑙𝑖𝑡𝑖 . As a
result, in order to provide a contention delay bound (𝑊𝐶𝐷𝑖),
it is required to know the maximum packet length of every
flow in the wNoC as in [7]. However, the latter breaks time-
composability. In order to retain time composable behavior
while supporting any bounded length packets, we define
𝐿𝑓𝑙𝑖𝑡𝑀𝐴𝑋 as the maximum length that packets in the wNoC can
have. In this context, the general expression for 𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖

can be formulated as follows, based on Equation 3:

𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖 = 𝐿
𝑓𝑙𝑖𝑡
𝑀𝐴𝑋 × 𝑣𝑐𝑊𝐶𝐷𝑖 (5)

Note that typically 𝐿𝑓𝑙𝑖𝑡𝑀𝐴𝑋 is determined by the communi-
cation protocol (e.g. [1]) on top of the wNoC. Also, it can be
limited at network interfaces by performing packetization [31].

D. Multiple-Flit, Virtual-Channels, Multiple-entry Queue
(𝐹𝑇 > 1, 1 < 𝑛𝑉 𝐶 < 𝑐𝐹,𝐸 > 1 or 𝐸 < 1)

For 𝑊𝐶𝐷 Equations so far, we have considered that queue
size is equal to packet size. In this section, we consider the
impact of having queues not matching packet size.

Queue size larger than packet size (𝐸 > 1). When queues
have enough space to store more than one packet, the number
of in-flight packets in the network increases. However, this
affects the worst-case latency experienced by packets in the
wNoC but not its contention delay. This is because packets
in a given virtual channel queue are served using a first-in



first out policy and therefore fairly arbitrated by round-robin
arbiters across router ports. In fact, the maximum number of
packets that 𝑟𝑘𝑖 is contending with at a given router 𝑅𝑗

𝑖 is given
by 𝑁𝑅𝑗

𝑖 and is the same regardless the number of contending
packets that can be stalled in a given router port. In this case
Equation 5 is a valid expression for this case (𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖).

Queue size smaller than packet size (𝐸 < 1). When a
packet cannot be completely buffered in a router, its flits are
spread across several of the router queues the packet traverses
until reaching its destination node. The number of effective
contenders in a network with buffers smaller than packet
size is reduced since a given packet cannot be requesting an
output port at two routers at the same time [29]. With this in
mind it can be concluded that the resultant 𝑊𝐶𝐷 is equal
or smaller than the one derived in Equation 5 (𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖).
However, composability requirements make almost impossible
determining the number of effective contenders as this would
require knowing the exact length for all packets of all flows
in the network. Therefore, in this scenario a safe upper bound
is 𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖.

VI. SYSTEM DESIGN CONSIDERATIONS

Incremental verification calls for composable WCET esti-
mates that are not affected by other applications. At the NoC
level this translates into each request to account for a time-
composable upperbound to the contention delay (𝑊𝐶𝐷) it can
suffer. From Equation 5 it follows that worst-contention delay
depends on three main factors: (1) the highest packet size a
flow may have (𝐿𝑓𝑙𝑖𝑡𝑀𝐴𝑋 ), (2) the number of VC (𝑛𝑉 𝐶), and
(3) the network size. This section discusses about these three
effects when designing a critical real-time embedded system
and reviews some existing techniques that can be employed to
minimize their impact.
Packet Size. Interestingly some NoC designs limit the maxi-
mum packet size by hardware and on others this responsibility
is left to the software layer. In the former case, the hardware
enables 𝐿𝑓𝑙𝑖𝑡𝑀𝐴𝑋 to be factored in 𝑊𝐶𝐷, which in turn enables
bounding the impact that other flows on the 𝑊𝐶𝐷.

However, in the latter case, a low priority task may send
long (or even unbounded) packets over the network, thus
increasing – potentially in a unbounded manner – the 𝑊𝐶𝐷
of high-priority tasks. In this context, it is required a suitable
mechanism allowing high-priority tasks to be isolated from
flows having unbounded packet size.
Virtual Channels. The use of virtual channels, which need to
be allocated in a static manner, helps reducing 𝑊𝐶𝐷 under
the conditions presented in Section V-B. Interestingly, in a
mixed-criticality system, allocating each criticality level an
independent VC does not help reducing 𝑊𝐶𝐷. First, VCs
increase 𝑟𝑟𝑐𝑜𝑛𝑡 since it is multiplied by 𝑛𝑉 𝐶. Further, if no
constraint is put on the number of cores that in a given point in
time can send requests under a criticality level, 𝑖𝑛𝑑𝑐𝑜𝑛𝑡 is not
reduced, i.e. Δ𝑖𝑛𝑑 = 1. Moreover, 𝐿𝑓𝑙𝑖𝑡𝑀𝐴𝑋 , which captures the
impact that the longest packet transmitted by any flow causes
on 𝑊𝐶𝐷, is independent of the particular VC in which that
packet is allocated (see Section V-C).

The dual-criticality systems, for instance, in the space
domain, it is well accepted that on-board systems comprise two
criticality levels [25]: one for control applications requiring
real-time execution, and another for payload applications
that are high-performance driven and have some (soft) real-
time requirements. In such dual-criticality systems having one
virtual-channel per criticality level may help reducing the
𝑊𝐶𝐷 suffered by requests of high-criticality tasks due to
low-criticality ones. This requires prioritizing high-criticality
requests over low-criticality ones. Flit-level preemption can
also be used to further reduce this impact. However, this
comes at the cost of providing no 𝑊𝐶𝐷 guarantees to the
low-criticality tasks’, since their requests’ 𝑊𝐶𝐷 depends
on the load high-criticality tasks put on the NoC. In other
domains, such as avionics or automotive, comprising more
than two criticality levels, with several of them requiring
time guarantees, the dual-criticality approach does not apply.
Investigating static VC allocation policies for these domains
is a fertile area of research and part of our future work.
Network Size. 𝑊𝐶𝐷 directly depends on the mesh size.
Clustered designs like those proposed in [23] allow creating
independent islands of communication (i.e. clusters) within the
wNoC by properly routing packets, which in turn reduces the
WCD. However, in this case a mechanism is needed to allow
inter-cluster communication without jeopardizing the 𝑊𝐶𝐷
of the affected clusters if they are intended to run real-time
tasks. In [23] inter-cluster communication is allowed by using
multiple VCs. This approach proposes the use of two VC: one
for intra-cluster and another one for inter-cluster communica-
tion assuming the amount of inter-cluster communication is a
known parameter at system integration. While this holds for
the case of communication requirements defined in avionics
applications [4], this would jeopardize time-composability in
other domain applications. partition communications can be
isolated without jeopardizing time-composability.

VII. MODELING EXISTING NOC DESIGNS

In this section we first assess the accuracy of the 𝑊𝐶𝐷
model presented in Section IV with special emphasis on the
accuracy of 𝑊𝐶𝐷 in the case of the most complex wNoC
designs (𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖). We also compare WCET estimates
obtained when both WCD and WCTT are used to capture the
impact of the wNoC contention on application’s WCET. Fi-
nally, we evaluate the impact that different network parameters
have on the contention.

Our experimental setup comprises gNoCsim [2], a powerful
cycle-accurate simulator of wormhole networks developed in
the context of the NaNoC project, which we connect to an
enhanced version of the SoClib simulator [3] to model a
complete manycore processor. With this framework, we model
two network setups resembling the ones deployed in real
processors: the TileraGx36 [36] and the 48-core Intel SCC
(ISCC) [30] manycore designs, based on publicly available
data. Table IV shows the relevant parameters of the two
different wNoC setups. The main difference between these
two network setups is on the usage of virtual channels. The



TABLE IV
TECHNICAL DETAILS OF THE MESH NOC IN HIGH-PERFORMANCE CHIPS:

48-CORE INTEL SCC AND 36 CORE TILERA-GX36

size routing 𝐿𝑟𝑜𝑢𝑡𝑒𝑟 nVC wNoCs Link width 𝐿𝑚𝑎𝑥
𝑓𝑙𝑖𝑡𝑠

Intel SCC 6x4 XY 4 cyc 8 1 128 bit 4
Tilera-Gx36 6x6 XY 1 cyc 1 5 32 bit 16

ISCC implements a wNoC with eight virtual channels and the
Tilera-Gx36 chip uses five independent networks that are used
to completely isolate different types of traffic.

A. 𝑊𝐶𝐷 accuracy and comparison with WCTT

We assess the accuracy of our𝑊𝐶𝐷 model in upperbound-
ing the actual contention caused in the wNoC by creating a
high-congestion scenario. To that end, we simulate the traffic
generated by a memory-intensive scenario in which all cores in
the network send packets to memory continuously. Note that
such traffic can be produced in real scenarios by programs
writing to memory continuously. In fact, we have noticed that
similar congestion scenarios can be reproduced even when
each node only sends packets sporadically if they share the
same destination node.

In this experiment, for all the network setups we analytically
compute bounds to WCTT [29] and 𝑊𝐶𝐷 (Equation 5) and
compare them with the measured contention delay and worst-
case traversal time obtained with the simulator under highest
congestion scenario. It is noteworthy to mention that the model
in [29] computes bounds provided the existing flows in the
system at deployment time are known and thus, precluding
incremental verification. To enable a fair comparison of our
metric (𝑊𝐶𝐷) with the WCTT metric we have adapted the
expressions in [29] to achieve composable WCTT bounds
by considering an all-to-all communication scenario. Note
that it would also be possible to adapt 𝑊𝐶𝐷 expressions
to compute bounds for a particular application. However, in
this paper we study the benefits of 𝑊𝐶𝐷 over 𝑊𝐶𝑇𝑇 in
a time-composable scenario. In the modeled high-congestion
scenario, the measured contention delay and traversal time
closely match actual WCD and WCTT respectively. To ensure
a steady congestion state is reached, measurements do not start
until at least 1,000 packets per node have been injected and are
performed until all nodes have sent at least 2 million requests.

Figure 4 shows a comparison of the measured and computed
metrics in both Tilera and ISCC-like networks. We assume
that buffers have capacity to store two packets to avoid
bubbles in the network. The results in each bar show the
geometric mean (gmean) of WCD (and WCTT) for all the
communication flows in the wNoC (i.e. for the packets of all
nodes). This provides a measure of the WCD (WCTT) each
packet suffers on average. All values are normalized to the
measured (observed) contention delay.
∙ The derived 𝑊𝐶𝐷 bounds are always higher than the
measured contention delays confirming they upperbound the
contention in the wNoC. Moreover, the difference between

Fig. 4. WCD bounds derived in this paper and adapted WCTT from [29]

measured and predicted contention with our model is very
small: 5% on average and 7% in the worst case.
∙ Likewise, measured WCTT values are close to the predicted
ones [29]. The difference between WCD and WCTT (which
is roughly the same for measured and predicted values) is
significant, evidencing that WCTT can be a pessimistic metric
to account for the interference of co-running tasks in the
network. In particular, for the ISCC WCTT is 2.94x higher
than the 𝑊𝐶𝐷 and 2.7x higher for the Tilera.

It is worth mentioning, although it is not presented in any
chart, that we have observed that, unlike𝑊𝐶𝐷, WCTT grows
with buffer size which in turns makes this metric even more
pessimistic when using wNoCs with larger buffer sizes.

B. Reducing 𝑊𝐶𝐷 values

Another parameter with high impact in wNoC contention is
the number of VCs and how they are allocated. In Figure 5
(in logarithmic scale) we show the effect of reducing in the
ISCC-like wNoC the number of VCs from 8 to 1. We observe
a reduction in terms of WCD (both observed and predicted)
of more than 7 times. Further, a smart deployment of the
wNoC by, for example, using regions of execution (clusters)
as presented in Section VI and properly mapping applications
to cores [23] produces reduced contention delays. If we
further create clusters of size 3𝑥4 or 3𝑥2 contention delay
is additionally reduced. Note that all those adjustments can be
done from the software without any change at hardware level
in the wNoC design. For instance, islands can be implemented
by mapping application so that communication doesn’t not
exceed defined island [23]. Likewise, the number of VCs
is a parameter that can be easily changed from software.
Researching on the convenient wNoC configurations ( regions,
static VC allocation) is part of our future work, building on the
contention delay model developed in this paper. Finally, it is
worth noting that in all scenarios in Figure 4, our𝑊𝐶𝐷 model
tightly captures the impact of these parameter variations.

C. Impact of wNoC interference on WCET

For the experiments in this section we use EEMBC Auto-
bench benchmarks [26]. We execute benchmarks in 3 different
scenarios: 2-hop where the memory is 2 hops away (1 in X and
1 in Y dimension) from the core where the benchmark runs;



Fig. 5. Effect of disabling VC and clustering on WCD for the SCC setup

Y-only where the benchmark is executed on the node farthest
away from the memory in the Y-axis and farthest in which
the benchmark is placed most hops away from the memory.

We compare observed execution times (OET) against
WCET estimates. The former is computed, by running the
application under a high-congestion scenario (as explained
in previous section) in order to provide fair comparison to
time-composable WCET estimates. For the latter, we first
compute the worst case execution time of the application
using zero-load latency (𝑊𝐶𝐸𝑇𝑧𝑙𝑙) and increment it with
the predicted impact of the wNoC (Δ𝑤𝑁𝑜𝐶). As a result, the
WCET estimate for manycore (𝑊𝐶𝐸𝑇𝑚𝑐) is computed as
follows:

𝑊𝐶𝐸𝑇𝑚𝑐 = 𝑊𝐶𝐸𝑇𝑧𝑙𝑙 +Δ𝑤𝑁𝑜𝐶 (6)

Δ𝑤𝑁𝑜𝐶 = 𝑛𝑟𝑒𝑞 ×
{
𝑓𝑡𝑣𝑐𝑊𝐶𝐷𝑖

𝑊𝐶𝑇𝑇 − 𝑧𝑙𝑙
where 𝑛𝑟𝑒𝑞 is the number of requests the application makes

to the wNoC along the worst-case path. Note that WCTT
already includes zero-load latency and in order to provide a
fair comparison, we have to deduct 𝑧𝑙𝑙 from WCTT, as it is
already included in 𝑊𝐶𝐸𝑇𝑧𝑙𝑙.

Figure 6 shows the gmean of 𝑊𝐶𝐸𝑇𝑚𝑐 estimates of
EEMBC benchmarks obtained with both 𝑊𝐶𝐷 and WCTT.
We observe that 𝑊𝐶𝐸𝑇𝑚𝑐 estimates obtained with 𝑊𝐶𝐷
are between 7% and 12% higher than OET. The maximum
difference for any benchmark is around 16% in the 2-hop
scenario. Meanwhile, in the case of 𝑊𝐶𝐸𝑇𝑚𝑐 estimates
obtained with WCTT there is a significant difference w.r.t.
OET. They are between 2.3x and 3.1x higher, with a maximum
difference of 3.2x across benchmarks.

VIII. RELATED WORK

Several network designs targeting soft and hard real-time
systems have been proposed. Next we summarize them.

Quality of Service (QoS). In the high-performance and
high-end embedded domain, QoS is used as a metric to
measure time predictability. Several proposals exist to im-
prove predictability on wNoCs, e.g. [10]. These QoS tech-
niques are specially suitable, for multimedia applications since
QoS can be offered under severe network load conditions.
Unfortunately, these techniques make difficult deriving tight

Fig. 6. 𝑊𝐶𝐸𝑇𝑚𝑐 estimates derived with WCD and WCTT w.r.t. OET

contention-delay bounds to each request to the wNoC, which
challenges deriving guarantees on that tasks running in a
wormhole-based manycore will meet their deadlines. Authors
in [6] proposed the QNoC architecture, which offers several
degrees of guarantee at low hardware cost. However, despite
that achieving real-time traffic guarantees is one of the targeted
services in QNoC, latency bounds provided in this study do
not actually bound contention delay experienced in the wNoC,
preventing the derivation of time-composable WCET bounds.

Real-time Specific NoCs. While there are several proposal
of real-time aware NoC designs – some of which have
implemented in FPGA or implemented in real products (e.g.
in the multimedia domain) –, exploring to which extend high-
performance (COTS) NoC designs can be used in the real-time
domain is of paramount importance. It is well accepted that the
hard real-time domain is a relative small market in comparison
with other domains such as mobile. Hence, customized NoCs
tailored for real-time such as TDMA-based or time-triggered
ones will naturally find difficulties in being adopted by real-
time industry [35] since their implementation incur high non-
recurrent costs. On the other hand, the big majority of the
proposed manycore designs across all computing domains use
high-performance wNoCs to perform the interconnection of
cores and shared resources within the chip. This makes wNoCs
accessible (at low cost) by the CRTES as they are implemented
in a vast set of chips. This paper makes an effort in the
direction of understanding the limitations and challenges in
adoption of wNoCs in real time systems.

Although it is not the topic of this paper in the field of
real-time specific NoCs we highlight TDMA-based NoCs [13],
[14], [32] approaches that satisfactorily provide time com-
posable behavior. While this TDMA-based NoCs that deal
with contention at transaction level (e.g. read and write
memory operations), time-triggered architectures [22] increase
the abstraction level by introducing the notion of a micro-
component, which is a self-contained computational unit.
In time-triggered architectures micro-components exchange
messages in contention-free slots. However, event-triggered
transactions, such as cache misses that access main memory
through the NoC, may suffer contention delay which also must
be upper-bounded.

Several hard real-time wormhole-based designs use of
flit-level virtual-channel preemption mechanisms for dual-



criticality systems [21], [33] to control contention in the net-
work in order to reduce network latency. In these approaches
high-priority virtual-channels can preempt packets from low-
priority virtual channels so that contention delay high-priority
channels is reduced at the cost of removing time-composable
contention delay guarantees to low-priority channels. They
require a virtual channel per communication flow, which
limits their scalability. This limitation is addressed in [34]
by proposing a priority share policy where contending flows
can share a given priority. Along this line, a recent work [7]
proposes an enhanced priority-shared flit-level virtual-channel
preemption NoC to support two criticality operation modes.
This design fulfills isolation requirements across criticality
levels without incurring in hardware resource wasting. Further,
in [16], authors build on top of [33], [34] and provide response
time analysis which considers impact of pipelining in the NoC.
However, this analysis considers communication among tasks
and do not consider memory accesses inside a task.

In general, flit-level virtual-channel preemption mechanisms
offer tight contention delay estimates. However, these ap-
proaches consider the impact of contention delay at the
schedulability and response time analysis and require knowing
the exact set of tasks using the wNoC and their communica-
tion flows, which negatively affects time composability and
incremental verification, as discussed in Section II.

WCTT in wNoCs. Several works focus on deriving an up-
perbound of WCTT adapting network calculus [18] to model
wNoCs [28]. Network calculus relies on the determination
of arrival curves of the applications running in the system
to determine an actual upperbound of WCTT. While these
approaches allow providing tight WCTT estimates, as WCTT
is adapted to the exact network load conditions, using per-
application arrival curves reduces time composability, since
WCTT estimates depend on the load corrunners put on the
NoC. Another set of works focuses on determining wNoC
packets WCTT by considering worst-case conditions, first
with assuming limitations on the packet-injection rate [19].
However, the bounds provided in [19] required assuming
packet injection is limited. In later works [11], [29] this
limitation is removed.

In this line of work, Dasari et. al [8] achieve tighter WCTT
bounds – than those derived with [11], [29] – based on
the following two observations: (1) flows injection rate is
inherently limited by the speed at which the processor pipeline
can process request-generating instructions (e.g load or stores);
and (2) packets of a given flow do not always contend with
the flow under analysis due to the existing release time of
their request of a flow/core. Regarding observation (1) we
have shown that while limiting the injection effectively reduces
WCTT values the actual contention that packets in the NoC
suffer remains unaltered, hence producing no effect on WCD.
Regarding observation (2) knowing what is the actual interval
between consecutive requests in every flow in the network
breaks the time composability requirement.

IX. CONCLUSIONS

In this paper we analyze the suitability of applying wNoCs
in the real-time embedded domain. To do so, this paper
proposes a new metric to account for the impact that NoC
interferences coming from different requesters have on the
WCET estimates: the worst-case contention delay (WCD),
which replaces the traditional metric, the worst-case travel
time (WCTT). Moreover, we derive an analytical model that
computes time-composable WCD bounds (𝑊𝐶𝐷) based on
common wNoC design parameters including flits-per-packet,
number of virtual channels and queue size in the router.
𝑊𝐶𝐷 is computed based on a wNoC parameter taxonomy
that identifies those parameters that must be fixed in order to
provide trustworthy and composable WCD bounds; and those
allowing certain flexibility.

Our 𝑊𝐶𝐷 model allows evaluating a wide range of exist-
ing COTS high-performance wNoCs. To that end, we apply
the model considering the design parameters of two wNoCs
deployed in real processors: the Tilera-Gx36 and the 48-core
Intel SCC (ISCC). Our analysis shows that considering WCD
rather than WCTT reduces WCET estimates by around 2.5x
for Tilera and ISCC on average.

ACKNOWLEDGMENT

The research leading to these results is funded by the
European Union Seventh Framework Programme under grant
agreement no. 287519 (parMERASA) and by the Ministry of
Science and Technology of Spain under contract TIN2015-
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