53,800 research outputs found

    The spectral-curvature parameter: an alternative tool for the analysis of synchrotron spectra

    Full text link
    The so-called Spectral Curvature Parameter(SCP), when plotted versus the high-frequency spectral index (alphahighalpha_{high}) of synchrotron sources, provides crucial parameters on the continuum spectrum of synchrotron radiation without the more complex modeling of spectral ageing scenarios. An important merit of the SCP-alphaalpha diagram is the enhanced reliability of extracting multiple injection spectra, alphainjalpha_{inj}. Different from the colour-colour diagram, tracks of different alphainjalpha_{inj}s, especially when the synchrotron particles are young, exhibit less overlap and less smearing in the SCP-alphaalpha diagram. Three giant radio galaxies(GRGs) and a sample of Compact steep spectrum(CSS) souces are presented. GRGs exhibit asymmetries of their injection spectral indices alphainjalpha_{inj} in the SCP-alphahighalpha_{high} diagram. The obtained alphainjalpha_{inj}s and the trends in the sources are cross-checked with the literature and show remarkable confidence. Besides the spectral steepening, spectral flattening is prominent in the radio lobes. The spectral flattening is a clue to efficient re-acceleration processes in the lobes. It implies interaction with the surrounding intergalactic or intra-cluster medium is an important characteristic of GRGs. In the SW lobe of DA240, there is a clear sign of CI and KP/JP bifurcation at the source extremity. This indicates a highly relativistic energy transportation from the core or in situ acceleration in this typical FR I lobe. Our analysis proves, if exists, KP spectra imply the existence of strong BsyncB_{sync} field with Bsync>BCMBB_{sync} > B_{CMB}. In the CSS sources, our result confirms the CI model and Bsync>>BCMBB_{sync} >> B_{CMB}. The synchrotron self-absorption is significant in the CSS sample.Comment: to be published in A&

    Strongly Coupled Quark Gluon Plasma (SCQGP)

    Full text link
    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and a reasonably good fit to lattice results are obtained for (2+1)-flavors and 4-flavors QGP. Hence it is the first unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.Comment: Revised with corrections and new results, Latex file (11 pages), postscript file of 7 figure

    Bank-Specific, Industry-Specific and Macroeconomic Determinants of Bank Profitability

    Get PDF
    The aim of this study is to examine the effect of bank-specific, industry-specific and macroeconomic determinants of bank profitability, using an empirical framework that incorporates the traditional Structure-Conduct-Performance (SCP) hypothesis. To account for profit persistence, we apply a GMM technique to a panel of Greek banks that covers the period 1985-2001. The estimation results show that profitability persists to a moderate extent, indicating that departures from perfectly competitive market structures may not be that large. All bank-specific determinants, with the exception of size, affect bank profitability significantly in the anticipated way. However, no evidence is found in support of the SCP hypothesis. Finally, the business cycle has a positive, albeit asymmetric effect on bank profitability, being significant only in the upper phase of the cycle.Bank profitability; business cycles and profitability; dynamic panel data model

    Pan-STARRS1 Discovery of Two Ultra-Luminous Supernovae at z ~ 0.9

    Get PDF
    We present the discovery of two ultra-luminous supernovae (SNe) at z ~ 0.9 with the Pan-STARRS1 Medium-Deep Survey. These SNe, PS1-10ky and PS1-10awh, are amongst the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_bol ~ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time-series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10^51 erg. We find photospheric velocities of 12,000-19,000 km/s with no evidence for deceleration measured across ~3 rest-frame weeks around light-curve peak, consistent with the expansion of an optically-thick massive shell of material. We show that, consistent with findings for other ultra-luminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.Comment: Re-Submitted to Ap

    Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem

    Full text link
    The partition function of the Baxter-Wu model is exactly related to the generating function of a site-colouring problem on a hexagonal lattice. We extend the original Bethe ansatz solution of these models in order to obtain the eigenspectra of their transfer matrices in finite geometries and general toroidal boundary conditions. The operator content of these models are studied by solving numerically the Bethe-ansatz equations and by exploring conformal invariance. Since the eigenspectra are calculated for large lattices, the corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat

    Higgs- and Skyrme-Chern-Simons densities in all dimensions

    Get PDF
    Two types of new Chern-Simons (CS) densities, both defined in all odd and even dimensions, are proposed. These new CS densities feature a scalar field interacting with a scalar. In one case this is a Higgs scalar while in the other it is a Skyrme scalar. The motivation is to study the effects of adding these new CS terms to a Lagrangian which supports static soliton solutions prior to their introduction.Comment: 20 pages, no figure

    Constraining the equation of state of the Universe from Distant Type Ia Supernovae and Cosmic Microwave Background Anisotropies

    Get PDF
    We analyse the constraints that can be placed on a cosmological constant or quintessence-like component by combining observations of Type Ia supernovae with measurements of anisotropies in the cosmic microwave background. We use the recent supernovae sample of Perlmutter et al and observations of the CMB anisotropies to constraint the equation of state (w_Q = p/rho) in quintessence-like models via a likelihood analysis. The 2 sigma upper limits are w_Q < -0.6 if the Universe is assumed to be spatially flat, and w_Q < -0.4 for universes of arbitrary spatial curvature. The upper limit derived for a spatially flat Universe is close to the lower limit (w_Q approx -0.7) allowed for simple potentials, implying that additional fine tuning may be required to construct a viable quintessence model.Comment: 9 pages, 8 Postscript figures, uses mn.sty. submitted to MNRA
    corecore