759,765 research outputs found
The D-optimal design of blocked and split-plot experiments with mixture components.
So far, the optimal design of blocked and split-plot experiments involving mixture components has received scant attention. In this paper, an easy method to construct efficient blocked mixture experiments in the presence of fixed and/or random blocks is presented. The method can be used when qualitative variables are involved in a mixture experiment as well. It is also shown that orthogonally blocked mixture experiments are highly inefficient compared to D-optimal designs. Finally, the design of a split-plot mixture experiment with process variables is discussed.Design; Fixed and random blocks; Minimum support design; Mixture experiment; Optimal; Optimal design; Orthogonal blocking; Process variables; Processes; Qualitative variables; Split-plot experiment; Variables;
Extensions of D-optimal Minimal Designs for Symmetric Mixture Models.
The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé\u27s linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex.
IN THIS PAPER EXTENSIONS OF THE D-OPTIMAL MINIMAL DESIGNS ARE DEVELOPED FOR A GENERAL MIXTURE MODEL TO ALLOW ADDITIONAL INTERIOR POINTS IN THE DESIGN SPACE TO ENABLE PREDICTION OF THE ENTIRE RESPONSE SURFACE: Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations
Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles
Copyright @ 2012 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 85 reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel University Open Access Publishing Fund.A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.This study is funded by the United Kingdom Food Standards Agency (Contract Number T01045)
Toward CP-even Neutrino Beam
The best method of measuring CP violating effect in neutrino oscillation
experiments is to construct and use a neutrino beam made of an ideal mixture of
and of monochromatic lines. The conceptual design of such
a beam is described, together with how to measure the CP-odd quantity. We
propose to exploit an accelerated unstable hydrogen-like heavy ion in a storage
ring, whose decay has both electron capture and bound beta decay with a
comparable fraction.Comment: 6 pages, 2 figures, Published versio
Sub-wavelength phononic crystal liquid sensor
We introduce an acoustic liquid sensor based on phononic crystals consisting of steel plate with an
array of holes filled with liquid. We both theoretically and experimentally demonstrate sensor
properties considering the mechanism of the extraordinary acoustic transmission as underlying
phenomenon. The frequency of this resonant transmission peak is shown to rely on the speed of
sound of the liquid, and the resonant frequency can be used as a measure of speed of sound and
related properties, like concentration of a component in the liquid mixture. The finite-difference
time domain method has been applied for sensor design. Ultrasonic transmission experiments
are performed. Good consistency of the resonant frequency shift has been found between
theoretical results and experiments. The proposed scheme offers a platform for an acoustic liquid sensor
Re-designing Dynamic Content Delivery in the Light of a Virtualized Infrastructure
We explore the opportunities and design options enabled by novel SDN and NFV
technologies, by re-designing a dynamic Content Delivery Network (CDN) service.
Our system, named MOSTO, provides performance levels comparable to that of a
regular CDN, but does not require the deployment of a large distributed
infrastructure. In the process of designing the system, we identify relevant
functions that could be integrated in the future Internet infrastructure. Such
functions greatly simplify the design and effectiveness of services such as
MOSTO. We demonstrate our system using a mixture of simulation, emulation,
testbed experiments and by realizing a proof-of-concept deployment in a
planet-wide commercial cloud system.Comment: Extended version of the paper accepted for publication in JSAC
special issue on Emerging Technologies in Software-Driven Communication -
November 201
Individual Heterogeneity in Punishment and Reward
We design experiments to study the extent to which individuals differ in their motivations behind costly punishment and rewarding. Our findings qualify existing evidence and suggest that the largest fraction of players is motivated by a mixture of both inequity-aversion and reciprocity, while smaller fractions are primarily motivated by pure inequity-aversion and pure reciprocity. These findings provide new insights into the literature on other-regarding preferences and may help to reconcile important phenomena reported in the experimental literature on punishment and reward.Heterogeneity; inequity aversion; monetary punishment/reward; reciprocity; social norms.
Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition
The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors
Electro-extractive fermentation for efficient biohydrogen production
Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50–70% maintained over continuous 30-day experiments. Contrary to\ud
previous reports, E. coli produced H2 after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy
- …
