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Abstract 
So far, the optimal design of blocked and split-plot experiments involving mixture 
components has received scant attention. In this paper, an easy method to construct 
efficient blocked mixture experiments in the presence of fixed and/ or random blocks 
is presented. The method can be used when qualitative variables are involved in a 
mixture experiment as well. It is also shown that orthogonally blocked mixture ex
periments are highly inefficient compared to V-optimal designs. Finally, the design 
of a split-plot mixture experiment with process variables is discussed. 

Keywords: fixed and random blocks, minimum support design, mixture experiment, 
orthogonal blocking, process variables, qualitative variables, split-plot experiment 

1 Introduction 

The orthogonal design of blocked mixture experiments has received a considerable amount 
of attention in the literature. Orthogonally blocked experiments allow the mixture com
ponent effects to be estimated independently from the block effects. The conditions for 
orthogonal blocking are derived by Nigam (1976) and John (1984). Several examples of 
such designs are given in Cornell (2002). Draper et al. (1993) find orthogonally blocked 
mixture designs for experiments with four components and two blocks, while Prescott et 
al. (1993, 1997) consider designs with five components. Prescott and Draper (1998) derive 
orthogonally blocked designs for experiments with three and four constrained components. 
Prescott (2000) shows how orthogonally blocked response surface designs can be projected 
onto a constrained design region in order to obtain an orthogonally blocked mixture de
sign. Mixture designs that are not orthogonally blocked are derived by Donev (1989), 
who presents a method that allows an easy construction of blocked mixt~re designs. 
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In all of these references, only the case of a single blocking variable that is treated as 
fixed was investigated. In some experimental situations, there is however more than one 
blocking variable. Typical examples of blocking factors are the vendor supplying the 
raw material, the shift or personnel running the experiments, the laboratory performing 
the experiments, or the day on which the runs are carried out. Clearly, some of these 
blocking variables should be treated as random. Other complications in many practical 
experiments are that the block sizes are small and that constraints are imposed on the 
proportions of the mixture components, so that designing orthogonally blocked experi
ments is often impossible. The purpose of this paper is to propose a few other approaches 
to design blocked mixture experiments in such situations. Firstly, the simple design con
struction method presented by Donev (1989) will be extended to the case of a blocking 
variable that is treated as random and to the case of more than one blocking variable. This 
method allows an easy construction of efficient blocked mixture experiments. Secondly, 
the algorithmic approach will be investigated for designing blocked mixture experiments 
in complicated situations. In addition, the trade-off between orthogonally blocked designs 
and designs obtained by the algorithmic approach will be discussed, as well as the design 
of mixture experiments involving qualitative variables. 

The design of mixture experiments involving process variables will be the focus in the 
second part of this paper. Cornell (1988) points out that this type of experiment is 
often conducted as a split-plot experiment. Kowalski et al. (2002) propose a couple of 
new designs while considering a new model form. In many practical situations where 
constraints are imposed on the mixture component proportions or the whole plot sizes 
are dictated by the experimental situation, these designs will however be infeasible so that 
an algorithmic approach is needed. 

2 Motivating examples 

Draper at al. (1993) describe an experiment involving four varieties of wheat. The purpose 
of the experiment, which was conducted at the Technical Services Department of Spillers 
Milling Limited in Cambridge, England, was to find mixtures of different varieties of flour 
with good bread-making abilities. In the experiment, four flours, each derived from a 
different variety of wheat, were mixed into doughs in various proportions. The doughs 
were baked into bread and the response measured was the specific volume, expressed in 
ml/100g, of the bread. Good flours produce loaves of high specific volume. Because the 
loaves were baked consecutively, the experiment was blocked to reduce the possible effects 
of within-day time effects. In the paper, orthogonally blocked designs with two blocks are 
presented for block sizes 7, 9, 10 and 13. The experiment actually conducted is displayed 
in Table 1. It consisted of two different blocks of size 9, both of which were duplicated. 
In Section 4.3, we will compute an alternative design for this example and compare both 
design options. 
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Table 1: Orthogonally blocked design used for the bread baking experiment. 
Block 1 Block 2 

Run Xl X2 X3 X4 Run Xl X2 X3 X4 

1 0.00 0.25 0.00 0.75 1 0.00 0.75 0.00 0.25 
2 0.25 0.00 0.75 0.00 2 0.25 0.00 0.75 0.00 
3 0.00 0.75 0.00 0.25 3 0.00 0.25 0.00 0.75 

-4 0.75 0.00 0.25 0.00 4 0.75 0.00 0.25 0.00 
5 0.00 0.75 0.25 0.00 5 0.00 0.00 0.25 0.75 
6 0.25 0.00 0.00 0.75 6 0.25 0.75 0.00 0.00 
7 0.00 0.00 0.75 0.25 7 0.00 0.25 0.75 0.00 
8 0.75 0.25 0.00 0.00 8 0.75 0.00 0.00 0.25 
9 0.25 0.25 0.25 0.25 9 0.25 0.25 0.25 0.25 

Kowalski et al. (2002) introduce a 28-run split-plot experiment with seven runs of size four 
for estimating a model in three mixture variables 81, 82 and 83 and two process variables 
WI and W2. The experiment is taken from Cornell (2002). It involves producing vinyl for 
automobile seat covers. The three mixture components in the experiment are plasticisers 
and the two process variables are rate of extrusion and temperature of drying. As many 
mixture experiments involving process variables, this experiment was carried out as a 
split-plot experiment. The levels of the process variables were held constant during four 
consecutive runs in which several different mixtures were tested. The design proposed 
by Kowalski et al. (2002) for this problem is displayed in Table 2. Two levels were used 
for each process variable. For the mixture components, the points of the second order 
lattice design were used, as well as the centroid of the simplex. The experiment was 
carried out by randomly selecting a combination of the levels of the process variables and 
running all blends at this combination. Next, another combination of the process variable 
levels is randomly chosen and all blends are run at this combination. This procedure 
was repeated until all combinations of the process variables had been performed. The 
experiment was therefore conducted in a split-plot format. The process variables are the 
whole plot factors of the experiment, whereas the mixture components are the sub-plot 
factors. In Section 6.2, we will compute V-optimal designs for this experiment assuming 
unconstrained and constrained design regions. We will also investigate the impact of 
including center points in the design. 

3 Mixture experiments 

Mixture experiments involve blending of two or more ingredients or components. In this 
type of experiment, the quality of the end product depends on the relative proportions 
of the components in the mixture. If we denote by q the number of components in the 
mixture and by Xi (i = 1,2, ... , q) the proportion contributed by the ith component, the 
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Table 2: Design proposed by Kowalski et al. (2002) for the vinyl thickness experiment. 
Whole plot 81 82 83 WI W2 

1 1.00 0.00 0.00 -1 1 
1 0.00 1.00 0.00 -1 1 
1 0.00 0.00 1.00 -1 1 
1 0.33 0.33 0.33 -1 1 
2 1.00 0.00 0.00 1 -1 
2 0.00 1.00 0.00 1 -1 
2 0.00 0.00 1.00 1 -1 
2 0.33 0.33 0.33 1 -1 
3 0.50 0.50 0.00 1 1 
3 0.50 0.00 0.50 1 1 
3 0.00 0.50 0.50 1 1 
3 0.33 0.33 0.33 1 1 
4 0.50 0.50 0.00 -1 -1 
4 0.50 0.00 0.50 -1 -1 
4 0.00 0.50 0.50 -1 -1 
4 0.33 0.33 0.33 -1 -1 
5 0.33 0.33 0.33 0 0 
5 0.33 0.33 0.33 0 0 
5 0.33 0.33 0.33 0 0 
5 0.33 0.33 0.33 0 0 
6 0.33 0.33 0.33 0 0 
6 0.33 0.33 0.33 0 0 
6 0.33 0.33 0.33 0 0 
6 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 
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following constraints apply to the mixture component proportions: 

0:::; Xi :::; 1, (1) 

and 
q 

LXi = l. (2) 
i=l 

The experimental region defined by these constraints is a (q - 1 )-dimensional simplex. A 
two-dimensional simplex is an equilateral triangle and a three-dimensional simplex is a 
tetrahedron. 

Often, additional constraints are imposed on the design region. Typically, some of the 
constraints can be specified as 

i = 1,2, ... , q, (3) 

where Ii and Ui represent the minimum and maximum proportions allowed for ingredient 
i. The resulting design region is in general an irregular simplex. In some specific cases 
however, the design region is again a regular simplex. Such situations occur if all Ui are 
one or if all Ii are zero and the sum of the (q - 1) largest upper bounds Ui is less than 
or equal to unity. In these cases, the use of pseudo-components allows the experimenter 
to use the standard results for unconstrained mixture experiments, i.e. for mixture ex
periments where no other constraints than (1) and (2) are active. An introduction to the 
use of pseudo-components is given in Cornell (2002). As an illustration of an irregular 
design region, we will use an example introduced by Piepel et al. (2002) throughout the 
paper. The hexagonal mixture region in the example is defined by 0.18 :::; Xl :::; 0.80, 
0.00 :::; X2 :::; 0.50 and 0.0 :::; X3 :::; 0.60. 

In the paper, we will concentrate on Scheffe models for modelling the response y of a 
mixture experiment. The first order Scheffe model is given by 

q 

y = L f3i Xi + C. 

i=l 

The second order Scheffe model is given by 

q q-1 q 

Y = L f3i Xi + L L f3ij X i X j + 10, 

i=l i=l j=i+1 

and the special cubic model can be written as 

q q-l q q-2 q-1 q 

Y = L f3i Xi + L L f3ij X i X j + L L L f3ijk X i X j X k + C. 
i=l i=l j=i+1 i=l j=i+1 k=j+1 
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In matrix notation, these models can be written as 

y = X,8 + c, 

where y is the vector of the responses of the n observations, X is the n x p extended 
design matrix corresponding to the mixture components, ,8 represents the p effects of the 
mixture variables and c is the vector of random errors. 

4 Blocked experiments 

In this section, we will investigate the design of blocked experiments. Initially, we will 
restrict our attention to the case of minimum support designs, i.e. to designs where the 
number of support points is equal to the number of parameters. Next, we will consider 
the more general case where the number of distinct design points is allowed to be larger. 
Firstly, however, we will describe the statistical model corresponding to a blocked mixture 
experiment. 

4.1 The statistical model 

In a general setting with both fixed and random blocking variables, the statistical model 
corresponding to a blocked mixture experiment can be written as 

y = X,8 + CI' + Z8 + c, 

= Fe+Z8 +c, 
(4) 

where X is the n x p extended design matrix corresponding to the components of the mix
ture, C is the design matrix corresponding to the indicator variables for the fixed blocks, 
Z is the design matrix corresponding to the indicator variables for the random blocks, and 
F = [ XC]. The vectors ,8, 1', 8 and c represent the effects of the mixture variables, the 
fixed block effects, the random block effects and the random errors, respectively. Finally, 
e' = [ ,8' 1"]. We will denote the number of fixed and random blocking variables by Bp 
and BR respectively, the number of elements in I' and 8 by bp and bR respectively, and 
assume that c'" N(On' O";In) , that 8", N(ObR' G), where 

and that cov( c, 8) = OnxbR. As a result, 

In the case where all blocking variables are treated as fixed, we have that V = O";In. If 
there is one blocking variable that is treated as random, then V is block diagonal. 
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Since the component proportions of the mixture sum to one, a condition for the identifia
bility of model (4) has to be implied. For simplicity, we shall assume that the number of 
columns of C is l:~l (bi - 1), where bi represents is the number of levels of the ith fixed 
blocking variable. This can be accomplished by dropping one indicator variable and the 
corresponding element of 1 for each blocking variable that is treated as fixed. 

When the random error terms as well as the random block effects are normally distributed, 
the maximum likelihood estimator of the unknown fixed model parameter e in (4) is the 
generalized least squares estimator 

e = (F'V-1F)-lF'V-1y. 

We shall be concerned with the computation of designs that allow an efficient estimation 
of the mixture component effects {3. In order to find such designs, we will use the V
optimality criterion. As a result, we will compute designs that maximize IX'V-1 X -
X'V-1Z(Z'V-1Z)-lZ'V-1XI, which is equivalent to maximizing the determinant of the 
information matrix F'V-1 F on the fixed effects e if the blocking structure is dictated 
by the experimental situation. When BR random blocking variables are involved in the 
experiment, the V-optimal design depends on the ratios 'f)l = crUCJ;, 'f)2 = crVcr;, ... , 
'f)BR = cr~R/cr; through V. In order to compare two designs with design matrices Fl and 
F2, we will report the relative efficiencies {IF~V-IF11/IF~V-IF2IPjp. 

4.2 Minimum support designs 

A minimum support design is a design for which the number of distinct design points is 
equal to p. If we denote by X an n x p extended design matrix, the information matrix 
of a design with minimum support can be written as 

X'X = X~ WXm , (5) 

where Xm is a p x p matrix with rows equal to the Scheffe polynomial expansions of 
the p distinct design points, W = diag[ nl n2 ... np ], and ni represents the number of 
replicates of the ith design point. Using this result, we find that 

X (X'X)-lX' = X (X' WX )-lX' = X X-1W-1(X' )-lX' = W-1 (6) m m mm m m mm m m . 

This result, which does not depend on the choice of the design points, implies that, in the 
absence of blocking variables, the prediction variance in a design point is proportional to 
the inverse of its number of replicates and that the covariance between the predictions 
in two distinct design points is zero. This result will be used extensively in the sequel of 
this section. It was also used by Donev (1989) who showed that, when there is one fixed 
blocking variable acting at b levels, IF'FI = IX'XI x IRI, where 

(7) 
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is a matrix which only depends on the assignment of the design points to the blocks. In this 
expression, which is valid only if no points are replicated within a block, ri (i = 1,2, ... , b) 
is the number of points in the ith block that appear more than once in the entire design. 
The set of these points is denoted by Ri , and the set of points the ith and the jth block 
have in common is denoted by R;j (i, j = 1,2, ... , b). Using this result, a V-optimal 
minimum support design in the presence of one fixed blocking variable can easily be 
constructed in two steps: 

1. Choose the p distinct design points and replicate them as evenly as possible in order 
to obtain a minimum support design with n observations that maximizes IX/XI. 
Which design points are replicated most is unimportant. 

2. Spread the replicated design points as evenly as possible over the blocks and avoid 
replicating points within a block. The assignment of the non-replicated design points 
to the blocks does not affect the V-optimality criterion value. 

Usually, there are several options for the assignment in step 2 that lead to the same V
criterion value. A similar result can be derived for the situation in which there is one 
random blocking variable. This is a consequence of the following theorem which is proven 
in Appendix A. 

Theorem 1 The determinant of the information matrix of a blocked experiment with 
minimum support and one blocking variable that has b levels and is treated as random is 
given by u;2P IX/XIISIICI, where 

~ -1 
- L-iERlb n i 

S= 
~ -1 

- L-iER2b ni 

c= [

1+1011 '11 ~ •.• 

1+k27)1 '" 
· . · . · . 
o 0 

'f/1 = uUu; and k1, k2"'" kb represent the block sizes. 

This result extends the result of Donev (1989). This is because the structure of S is 
identical to that of R when 'f/1 -+ 00. The theorem implies that, as in the case of one 
fixed blocking variable, a minimum support design in the presence of one random blocking 
variable can be constructed in two independent stages. 
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x, 

Xl 

Figure 1: Graphical representation of a V-optimal minimum support design with two blocks 
of size four for estimating a second order Scheffe polynomial in three mixture com
ponents. 

Suppose, for example, that an experiment with eight runs has to be designed for estimat
ing a second order Scheffe polynomial in three mixture variables and that there are two 
blocks of size four. The determinant IX'XI can then be maximized by choosing the six 
points of the second order simplex lattice design and duplicating any two of the points. 
This yields IX'XI = 0.000977. Next, one instance of the duplicated points is assigned 
to the first block and the other is assigned to the second block. Finally, two of the four 
non-replicated points are assigned to one block and the remaining points are assigned 
to the other. One possible design obtained in this way is displayed in Figure 1. This 
design is a V-optimal minimum support design no matter whether the blocking variable 
is treated as random or fixed. In a similar fashion, a V-optimal minimum support design 
can be constructed for the constrained design region introduced in Section 3. In order to 
determine six points for estimating a second order Scheffe model, a search was performed 
over a 1I8-point grid consisting of the vertices of the design region, the centroids of order 
one, the overall centroid, and all points the proportions of which are multiples of 0.05 and 
that satisfy the constraints. The best points found are five of the six vertices of the design 
region and the overall centroid. The proportions corresponding to these design points are 
displayed in Table 3. In Figure 2, these points are used to construct a V-optimal mini
mum support design. 

As it is shown in Appendix B, the theorem of Donev (1989) can also be extended to the 
situation where more than one fixed blocking variable is involved in the experiment. The 
result in Theorem 1 can be extended to the situation where there is more than one random 
blocking variable, provided the block sizes are equal. This is shown in Appendix C. 

Theorem 2 The determinant of the information matrix of a blocked mixture experiment 
with minimum support and two or more blocking variables that are treated as fixed is 
proportional to the product of the determinant IX'XI and a determinant that depends only 
on the assignment of the points to the blocks. 
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Table 3: V-optimal points for constructing a V-optimal minimum support design on a con
strained design. 

Xl X2 X3 

0.180 0.220 0.600 
0.180 0.500 0.320 
0.400 0.000 0.600 
0.477 0.237 0.287 
0.500 0.500 0.000 
0.800 0.000 0.200 

Figure 2: Graphical representation of a V-optimal minimum support design on a constrained 
design region with two blocks of size four for estimating a second order Scheffe 
polynomial in three mixture components. 

Theorem 3 The determinant of the information matrix of a blocked mixture experiment 
with minimum support, equal block sizes and two or more blocking variables that are treated 
as random is proportional to the product of the determinant IX/XI and a determinant that 
depends only on the assignment of the points to the blocks. 

These theorems imply that constructing V-optimal minimum support designs can still be 
done in two stages when more than one blocking variable is involved in the experiment. 
In assigning the replicated design points to the blocks, it should be avoided that points 
are replicated at a given level of one of the blocking variables. Firstly, IX/XI is maxi
mized, and next, the best possible assignment is determined. Suppose, for example, that 
a mixture experiment involving two blocking variables has to be designed for estimating 
a second order Scheffe polynomial model. Suppose also that each blocking variable acts 
at two levels and that each block contains two observations. As a result, the experiment 
consists of eight observations. The V-optimal design points for a minimum support design 
are given by the six points of the second order simplex lattice design, two of which are 
duplicated. The best assignment is obtained by assigning one of the duplicated design 
points to every block. Two designs obtained in this way are given in Figure 3. The two 
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designs are optimal for this problem in case of fixed block effects as well as in case of 
random block effects. This small example shows that the non-replicated points can be 
assigned to any block without affecting the design criterion value. 

An example of the construction of V-optimal minimum support designs with unequal 
block sizes for estimating a second order Scheffe model in four components is given in 
Figure 4. Unequal block sizes may be needed when, for instance, different numbers of 
machines are used every day or different numbers of laboratory assistants are available. 
The 16-point design in Figure 4 has four blocks of size three and two blocks of size two. It 
was designed for a situation in which there is one blocking variable acting at three levels 
and another acting at two levels. The ten distinct points of the design are the ten points 
of the second order simplex lattice design. The midpoints of the six edges were duplicated 
in order to obtain 16 design points. The duplicated points were assigned to the blocks 
first so that each block contains two edge midpoints. No edge midpoints occur more than 
once at the same level of any of the blocking variables. Finally, a corner point is assigned 
to each of the blocks that should have three observations. 

4.3 General case 

For the examples shown, the construction of V-optimal minimum support designs is easy. 
However, the problem rapidly becomes complicated when the design region is constrained 
when more than one blocking variable acting at more than two levels is involved. If the 
design region is constrained, it may become hard to find a good set of design points. 
This was already illustrated by the design in Figure 2. For problems with relatively large 
blocks and/or relatively large numbers of levels for the blocking variables, finding the best 
possible assignment will also become less easy. In such cases, an algorithmic approach 
will be needed. In that case, one might as well consider moving away from the minimum 
support designs and consider using more than p distinct design points. The algorithmic 
approach is also helpful when the design region is irregular. 

Atkinson and Donev (1992) (see page 162) already indicated that moving away from min
imum support designs destroys the properties that facilitate the construction of designs 
in blocks and that this complication might yield a negligible or no increase in efficiency. 
It turns out that for some blocked mixture experiments the potential gain is larger. The 
design displayed in Table 4 is for example 8.26% better in terms of V-efficiency than the 
minimum support designs in Figure 3 when the blocks are treated as fixed. The design 
was obtained by using the algorithm of Goos et al. (2002) and a grid of 231 equally spaced 
candidates on the design region. The proportions of the candidates were multiples of 0.05. 
It can be seen from Table 4 that, apart from the corner points, all design points lie on 
the edges of the design region. 

The design in Table 4 can also be found when the block effects are treated as random, 
for example when '171 = '172 = 5. In that case, the design is 7.32% more efficient than the 
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Figure 3: Alternative V-optimal minimum support designs with two blocking variables acting 
at two levels for estimating a quadratic SchefIe polynomial in three components. 
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Figure 4: Graphical representation of a V-optimal minimum support design with two blocking 
variables and unequal block sizes for estimating a quadratic Scheffe polynomial. 

Table 4: V-optimal design with blocks of size two for an experiment with two blocking variables 
acting at two levels. 

Blocking variable 1 
Levell Level 2 

Xl X2 X3 Xl X2 X3 

Level 0.70 0.30 0.00 0.00 0.00 1.00 
Blocking 1 0.50 0.00 0.50 0.00 0.65 0.35 
variable 2 Level 0.00 0.35 0.65 0.45 0.55 0.00 

2 0.00 1.00 0.00 1.00 0.00 0.00 

minimum support designs in Figure 3. When three observations per block are available, 
then no improvement can be realized by using the 231-point grid as the set of candidates. 
When four observations per block are available, a negligible improvement is possible. If 
the block effects are fixed, an improvement of 3.18% in the V-criterion value is possible 
if the design points on the edges are moved in the direction of one of the vertices for the 
four component design in Figure 4. Similar improvements can be realized when the block 
effects are treated as random and 'TIl and 'TI2 are not too small. 

4.4 Orthogonality versus efficiency 

An alternative method to design blocked mixture experiments is to construct an orthog
onally blocked mixture experiment. The advantage of an orthogonally blocked design is 
that the mixture component effects can be estimated independently of the block effects. 
The conditions for orthogonal blocking were derived by Nigam (1976) and John (1984). 
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(a) Orthogonally blocked design 

x; 

(b) V-optimal design 

Figure 5: Graphical representation of two three-component mixture designs with two blocks of 
size four for estimating a second order Scheffe polynomial. 

For an experiment to be orthogonally blocked, the average level of the columns of X must 
be the same in every block. One approach to produce designs for mixture experiments in 
orthogonal blocks is described by Prescott (2000). He shows how projecting well-known 
orthogonally blocked response surface designs onto a constrained design region yields an 
orthogonally blocked mixture design. An example of such a design for three components 
Xl, X2 and X3 is provided in Figure 5a. The design points are also displayed in the left 
panel of Table 5. This design with two blocks of size four was obtained by projecting the 
eight points of a 23 factorial design onto the simplex. 

The 'V-optimal design in Figure 5b was obtained using the algorithm of Goos et al. (2002) 
and the set of 231 candidate points described earlier. If the block effects are treated as 
fixed, the relative V-efficiency of the 'V-optimal design with respect to the orthogonally 
blocked design amounts to 3.33. This means that the 'V-optimal design is more than 
three times as efficient. A drawback of this design is that it is not orthogonally blocked. 
This drawback is, however, outweighed by the enormous increase in V-efficiency. The 
minimum support design displayed in Figure 1 and in the right panel of Table 5 is 3.11% 
less efficient than the V-optimal design but it is still more than three times as efficient 
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Table 5: Three-component mixture designs with two blocks of size four for estimating a 
quadratic Scheffe polynomial. 

Prescott V-optimal Min. support 
Block Xl X2 X3 Xl X2 X3 Xl X2 X3 

1 2/3 1/6 1/6 0.6 0.4 0 0.5 0.5 0 
1 1/6 2/3 1/6 0.5 0 0.5 0.5 0 0.5 
1 1/6 1/6 2/3 0 1 0 0 0 1 
1 1/3 1/3 1/3 0 0.4 0.6 0 0.5 0.5 
2 1/2 1/2 0 0.4 0.6 0 1 0 0 
2 1/2 0 1/2 0 0.6 0.4 0 1 0 
2 0 1/2 1/2 1 0 0 0.5 0 0.5 
2 1/3 1/3 1/3 0 0 1 0 0.5 0.5 

Table 6: V-optimal design used for the bread baking experiment. 
Block 1 Block 2 

Run Xl X2 X3 X4 Run Xl X2 X3 X4 

1 0.45 0.55 0.00 0.00 1 0.55 0.45 0.00 0.00 
2 0.00 0.50 0.50 0.00 2 0.00 0.00 1.00 0.00 
3 0.50 0.00 0.00 0.50 3 0.50 0.00 0.00 0.50 
4 0.00 0.50 0.00 0.50 4 0.00 1.00 0.00 0.00 
5 0.00 0.00 0.50 0.50 5 0.00 0.00 0.00 1.00 
6 0.50 0.00 0.50 0.00 6 0.00 0.00 0.50 0.50 
7 0.00 0.00 1.00 0.00 7 0.50 0.00 0.50 0.00 
8 1.00 0.00 0.00 0.00 8 0.00 0.50 0.00 0.50 
9 0.00 0.00 0.00 1.00 9 0.00 0.50 0.50 0.00 

as the orthogonally blocked design. Similar efficiency gains are obtained when the blocks 
are treated as random. 

Another illustration of the poor performance of orthogonally blocked mixture experiments 
in terms of V-efficiency is provided by the bread baking experiment introduced in Sec
tion 2. An orthogonally blocked design with two blocks of size nine is given in Table 1. A 
V-optimal design for the same problem is displayed in Table 6. Contrary to the orthogo
nally blocked design, the V-optimal design has observations at the corners of the design 
region and at or close to the midpoints of the edges. When the blocks are treated as fixed, 
the V-optimal design is 70.07% better in terms of V-efficiency. Again, this shows that 
orthogonality is extremely expensive in terms of efficiency. 

The V-optimal designs are not orthogonally blocked. However, for the V-optimal design 
in Table 6 the orthogonality condition is satisfied for eight of the ten mixture component 
terms in the second order model. The two terms for which the condition is not satisfied 
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are those in Xl and X2. For the minimum support design in Table 5, the orthogonality 
condition is satisfied for three of the six terms in the mixture model, one of which is a term 
involving a linear effect. For the V-optimal design in the same table, the orthogonality 
condition is satisfied for two of the interaction terms only. 

In this section, it was shown that orthogonally blocked mixture designs may perform 
poorly in terms of V-efficiency. However, V-optimal designs perform reasonably well in 
terms of orthogonality, especially when the block sizes are not too small. V-optimal de
signs typically satisfy the orthogonality condition for most mixture component interaction 
terms and some of the linear terms. The number of terms for which the orthogonality con
dition is satisfied increases with the block sizes. This is also true for V-optimal minimum 
support designs. 

5 Qualitative experimental variables 

The problem of designing a blocked mixture experiment with fixed block effects is strongly 
related to that of designing an experiment involving both qualitative and mixture vari
ables. For both situations, the model (4) can be used since both blocks and levels of 
qualitative variables are represented by dummy variables. However, the effects of the 
blocking variables are usually considered as nuisance in a blocked mixture experiment, 
i.e. they are not of primary interest to the experimenter. The main reason for including 
the block effects in the model is to reduce the residual variance. If qualitative experi
mental variables are involved in an experiment, estimating their effects is as important as 
estimating the mixture component effects. Another difference between both problems is 
that, in blocked experiments the numbers of runs at each level of the blocking variables 
are often dictated by the experimental situation whereas usually no such constraints are 
imposed if an experiment involves qualitative variables that are of primary interest to the 
researcher. It is clear that, in the latter situation, other design options become available. 

Reconsider for example the minimum support designs in Figure 3. These designs are 
V-optimal minimum support designs for an experiment involving three mixture compo
nents and two qualitative variables acting at two levels. It turns out, however, that the 
unbalanced design in Figure 6 is equally good in terms of V-efficiency if the interest is in 
estimating the mixture component effects and the effects of the blocking variables. The 
unbalanced design in Figure 6 and the balanced designs in Figure 3 only differ in the 
assignment of the non-replicated design points. Similarly, the design in Figure 7 is equiv
alent to the design in Figure 4. The optimality of the unbalanced designs is important 
for situations in which running experiments at certain levels of the qualitative variables 
is more difficult or more costly than at others. Of course, a design with one observation 
at some combinations of levels of the qualitative variables, like that in Figure 6 might not 
be liked by a practitioner. Such a situation is however unlikely to occur in practice as the 
total number of observations will usually be larger. 
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X, X, 

X, 

X, X, 

xIL-------~X, X, L-------~X, 

Figure 6: Alternative 'V-optimal minimum support design with two qualitative variables acting 
at two levels for estimating a quadratic Scheffe polynomial in three components. 

X, x, x, x, x, 

x, x, x, 

L1 x, x, ;x, x, ;x, x, 

Figure 7: Alternative 'V-optimal minimum support design with two blocking variables for es
timating a quadratic Scheffe polynomial in four components. 
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6 Split-plot experiments 

Many industrial mixture experiments involve process variables. As Cornell (1988) pointed 
out, a great number of them are carried out in a split-plot format. In this section, we will 
first describe the statistical model corresponding to this type of experiment. Next, the 
usual approaches to designing mixture experiments with process variables are discussed 
and the algorithmic approach is presented as an alternative. Finally, we will apply the 
algorithmic approach to the vinyl thickness experiment introduced in Section 2. 

6.1 Statistical model and design 

The hard-to-change factors in a split-plot experiment are usually called whole plot vari
ables and can be denoted by WI, W2, ... 'Wmw or simply by w. The remaining ms = m-mw 
variables are referred to as the sub-plot variables 81, 82, ... , 8 mB or s. In the vinyl thickness 
example, there are two whole plot variables and three sub-plot variables. The whole plot 
variables are the process variables rate of extrusion (WI) and temperature of drying (W2), 
whereas the sub-plot variables are the three mixture variables (81, 82 and 83). 

The jth observation (j = 1,2, ... , ki ) within the ith whole plot (i = 1,2, ... , b) of a 
split-plot experiment can be written as 

Yij = f'(Wi' Sij){3 + 'Yi + Cij, (8) 

where f'(wi,sij) represents the expansion of the whole plot variables and the sub-plot 
variables, the p x 1 vector {3 contains the p model parameters, 'Yi is the random effect of 
the ith whole plot or the ith whole plot error, and Cij is the sub-plot error. We will assume 
that the split-plot model is estimable. For that purpose, a model containing linear terms 
in all mixture components should not contain an intercept. 

In matrix notation, the model corresponding to a split-plot design is written as 

Y = X{3 + Z"Y + e, 

where X represents the n x p design matrix containing the settings of both the whole 
plot variables wand the sub-plot variables s. The matrix Z is a n x b matrix of zeroes 
and ones assigning the n observations to the b whole plots. The random effects of the 
b whole plots are contained within the b-dimensional vector "Y, and the random errors 
are contained within the n-dimensional vector e. It is assumed that e rv N(On, o-;In) , 
"Y rv N(Ob, o-~Ib) and cov(e, "Y) = Onxb. Under these assumptions, the variance-covariance 
matrix of the observations var(y) can be written as 

V = o-;(In + 'f/ZZ') , 

where 'f/ = o-~/o-; is a measure for the extent to which observations within the same whole 
plot are correlated. The larger 'f/, the more the observations within a whole plot are cor
related. 

18 



Under normality, the maximum likelihood estimate of the unknown model parameter (3 
in (8) is the generalized least squares estimate. As a result, the unknown model parameters 
(3 are estimated by 

and their information matrix is given by XlV-IX. A 'V-optimal split-plot design maxi
mizes the determinant of this matrix taking into account the restrictions imposed by the 
practical situation. In order to compare two designs with design matrices Xl and X 2 , we 
will report the relative efficiencies {IX~V-IXll/IX~V-lX21P/P. 

In many cases, mixture experiments involving process variables are designed by combin
ing simplex lattice designs for the mixture components and factorial arrangements for 
the process variables. This way of constructing a design is very simple but it leads to 
large experiments. Smaller designs, as for example the one in Table 2, are proposed by 
Kowalski et al. (2002). 

In a split-plot experiment, the number of observations within each whole plot is usually 
dictated by the experimental situation. Typical examples of constraints on the number 
of observations in a whole plot are the size of a furnace or the number of runs that can 
be performed on one day. It is clear that the design in Figure 2 is a design option when 
the whole plot sizes are equal to four, for example because four runs can be performed on 
one day if the rate of extrusion and temperature of drying are kept fixed, and when the 
design region is unconstrained. For example, if five or six observations would be available 
per whole plot, then one or two center points could be added to each whole plot without 
destroying the balance of the design. In terms of design efficiency, this would however not 
be the best thing to do. 

We propose to use an algorithmic approach to design mixture experiments involving pro
cess variables because this method is flexible enough to cope with any whole plot sizes as 
well as with constrained design regions. In addition, it enables the experimenter to take 
into account the split-plot nature of the experiment. Goos and Vandebroek (2002) devel
oped an algorithm to generate V-optimal split-plot designs with given numbers of whole 
plots and sub-plots. We have applied their algorithm to the vinyl thickness experiment. 
The resulting designs are compared to the design proposed by Kowalski et al. (2002) in 
the remainder of this section. The effects of including center points in the design and of 
constraining the design region are investigated as well. 

6.2 The vinyl thickness experiment 

In order to compute alternative designs for the vinyl thickness experiment, we have used 
the algorithm of Goos and Vandebroek (2002) which computes 'V-optimal split-plot de
signs for given numbers of observations, whole plots and sub-plots. The model assumed 
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is given by 

3 2 3 3 2 

Yij = L (JkSk,ij + L L (JklSk,ijSI,ij + o;W1,iW 2,i + L L OklSk,ijWl,i + /i + [ij' 

k=l k=11=k+1 k=l l=l 

This model combines the second order mixture model 

3 2 3 

Y = L (JiSi + L L (JijSiSj 

i=l i=l j=i+1 

and the main-effects plus interactions model 

More details on this type of model can be found in Kowalski et al. (2000,2002). 

The set of candidate design points consisted of all combinations of the six points of the 
second order simplex lattice design and the centroid for the three mixture components 
and the 22 factorial design for the two process variables. This produced a set of 7 x 4 
candidate points. The V-optimal design for this problem is displayed in Table 7. This 
design is optimal for a wide range of 1}-values including the estimated values obtained by 
Kowalski et al. (2002) and Goos (2002). 

The V-efficiency of the design in Table 7 is much larger than that of the design in Table 2. 
This is true for any value of 1}. For example, the V-optimal design is 2.08 times better 
in terms of V-efficiency than the design in Table 2 when 1} = 1. In addition, the average 
variance of the parameter estimates is 40% smaller. The V-optimal design is therefore 
67% better in terms of A-efficiency. The average prediction variance over the design re
gion is 44% smaller, so that the V-optimal design is 78% better in terms of V-efficiency. 
Finally, the maximum prediction variance is 55% smaller, yielding an improvement of 81 % 
in Q-efficiency. Similar figures were obtained for other values of 1}. However, as opposed 
to the design proposed by Kowalski et al. (2002), the V-optimal design does not have 
replicates of the center point and it does not allow the estimation of the pure whole plot 
error variance or the pure sub-plot error variance. In order to find out the effect of adding 
center points on the efficiency of the design for the vinyl thickness experiment, we have 
computed V-optimal designs with 4, 8 and 12 center points. The resulting designs are 
displayed in Table 8. 

The inclusion of center points leads to a smaller V-efficiency. When 1} = 1 and four center 
points are included, the design obtained is 80% more efficient than that of Kowalski et 
al (2002). When 12 center points are included, a gain of 27% can be achieved. An overview 
of the improvements in efficiency is given in Table 9. From the table, it can be seen that 
the designs found using the algorithm of Goos and Vandebroek (2002) outperform the 
design of Kowalski et al. (2002) in terms of V-optimality, V-optimality and Q-optimality. 
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Table 7: 'V-optimal design for the vinyl thickness experiment. 
Whole plot 81 82 83 WI w2 

1 0.00 1.00 0.00 -1 -1 
1 1.00 0.00 0.00 -1 -1 
1 0.00 0.00 1.00 -1 -1 
1 0.50 0.00 0.50 -1 -1 
2 0.50 0.50 0.00 -1 -1 
2 0.00 0.00 1.00 -1 -1 
2 0.00 0.50 0.50 -1 -1 
2 1.00 0.00 0.00 -1 -1 
3 1.00 0.00 0.00 -1 1 
3 0.00 0.00 1.00 -1 1 
3 0.00 1.00 0.00 -1 1 
3 0.00 0.50 0.50 -1 1 
4 0.50 0.50 0.00 1 -1 
4 0.00 0.00 1.00 1 -1 
4 0.00 1.00 0.00 1 -1 
4 1.00 0.00 0.00 1 -1 
5 0.00 1.00 0.00 1 -1 
5 0.00 0.50 0.50 1 -1 
5 0.50 0.00 0.50 1 -1 
5 1.00 0.00 0.00 1 -1 
6 0.00 0.50 0.50 1 1 
6 0.00 0.00 1.00 1 1 
6 1.00 0.00 0.00 1 1 
6 0.00 1.00 0.00 1 1 
7 0.50 0.50 0.00 1 1 
7 0.00 0.00 1.00 1 1 
7 0.00 1.00 0.00 1 1 
7 0.50 0.00 0.50 1 1 
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Table 8: 'V-optimal designs with 4 8 and 12 center points for the vinyl thickness experiment. , 
Whole 4 center points 8 center points 12 center points 

plot Xl X2 X3 Zl Z2 Xl X2 X3 Zl Z2 Xl X2 X3 Zl Z2 

1 0.00 0.50 0.50 -1 -1 0.00 0.00 1.00 -1 -1 0.00 1.00 0.00 -1 -1 
1 0.00 1.00 0.00 -1 -1 0.00 1.00 0.00 -1 -1 0.00 0.00 1.00 -1 -1 
1 1.00 0.00 0.00 -1 -1 1.00 0.00 0.00 -1 -1 1.00 0.00 0.00 -1 -1 
1 0.00 0.00 1.00 -1 -1 0.50 0.50 0.00 -1 -1 0.00 0.50 0.50 -1 -1 
2 1.00 0.00 0.00 -1 1 0.00 1.00 0.00 -1 1 0.50 0.00 0.50 -1 1 
2 0.50 0.50 0.00 -1 1 0.00 0.00 1.00 -1 1 1.00 0.00 0.00 -1 1 
2 0.00 0.00 1.00 -1 1 1.00 0.00 0.00 -1 1 0.00 1.00 0.00 -1 1 
2 0.00 1.00 0.00 -1 1 0.00 0.50 0.50 -1 1 0.00 0.00 1.00 -1 1 
3 0.00 0.50 0.50 -1 1 0.50 0.00 0.50 1 -1 0.50 0.00 0.50 1 -1 
3 0.50 0.00 0.50 -1 1 1.00 0.00 0.00 1 -1 0.00 0.00 1.00 1 -1 
3 0.50 0.50 0.00 -1 1 0.50 0.50 0.00 1 -1 1.00 0.00 0.00 1 -1 
3 0.00 1.00 0.00 -1 1 0.00 0.50 0.50 1 -1 0.00 1.00 0.00 1 -1 
4 0.00 0.00 1.00 1 -1 1.00 0.00 0.00 1 -1 0.50 0.50 0.00 1 1 
4 0.50 0.00 0.50 1 -1 0.50 0.00 0.50 1 -1 0.00· 1.00 0.00 1 1 
4 1.00 0.00 0.00 1 -1 0.00 1.00 0.00 1 -1 0.00 0.00 1.00 1 1 
4 0.00 1.00 0.00 1 -1 0.00 0.00 1.00 1 -1 1.00 0.00 0.00 1 1 
5 0.00 0.50 0.50 1 1 0.50 0.50 0.00 1 1 0.33 0.33 0.33 0 0 
5 0.50 0.50 0.00 1 1 0.00 1.00 0.00 1 1 0.33 0.33 0.33 0 0 
5 0.00 0.00 1.00 1 1 0.00 0.00 1.00 1 1 0.33 0.33 0.33 0 0 
5 1.00 0.00 0.00 1 1 1.00 0.00 0.00 1 1 0.33 0.33 0.33 0 0 
6 0.00 1.00 0.00 1 1 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
6 0.00 0.00 1.00 1 1 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
6 1.00 0.00 0.00 1 1 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
6 0.50 0.00 0.50 1 1 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
7 0.33· 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
7 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0 0 
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Table 9: Relative efficiencies of the design options for the vinyl thickness experiment. 
'f)=1 'f) = 10 

D A V G D A V G 
'V-optimal 2.08 1.67 1.78 1.81 2.09 1.61 1.42 1.04 
4 center points 1.80 1.52 1.64 1.92 1.79 1.42 1.28 1.12 
8 center points 1.54 1.23 1.40 1.77 1.52 1.15 1.15 1.14 
12 center points 1.27 0.77 1.14 1.23 1.24 0.79 1.03 1.07 
Kowalski et al. (2002) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

In terms of A-optimality, the design with 12 center points is worse than the benchmark 
design, but the others are all considerably better. If the experimenter requires an inde
pendent estimate of the variances of the experimental errors, an alternative approach to 
that taken by Kowalski et al. (2002) is to spread the replications over as many design 
points as possible. This way the efficiency of the design would be higher. 

The approach presented here is particularly useful when constraints are imposed on the 
mixture components. It does not only allow us to generate an optimum design under 
certain constraints but also to evaluate the robustness of the design in the case of depar
tures from them. For example, the design in Table 10 is 'V-optimal for 'f)-values in the 
neighborhood of one when the constraints introduced in Section 3 apply. It was obtained 
using a 52-point candidate set obtained by combining the vertices, the edge midpoints 
and the overall centroid for the mixture region with a 22 design for the process variables. 

7 Discussion 

Orthogonality is a useful feature of an experimental design. Two-level factorials designs 
can be divided in orthogonal blocks without loss of efficiency, while the loss in the case of 
blocking response surface designs is modest. However, our results show that when orthog
onality is required for studying the properties of a mixture, it comes at a considerably 
higher cost in terms of the precision of the model parameters than in other cases. Often 
orthogonality is even unattainable because of constraints on the mixture components, the 
block sizes and the total number of observations. It can be lost as a result of missing 
observations or inaccurate setting of the component levels. There are also many situations 
where the experimenter needs to investigate the effect of other variables, such as process 
controls, or to address complications with the block structure, such as those occurring in 
split-plot experiments. The requirement of orthogonality then becomes a secondary issue. 

The approach to blocking experiments with mixtures described here is free from all these 
limitations and ensures 'V-optimality of the blocked experimental designs. It provides 
valuable flexibility to select the number of blocks and the number of observations in 
them, and to specify the nature of the blocking variables generating the blocks. It is also 
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Table 10: V-optimal design for the vinyl thickness experiment assuming a constrained design 
region. 

Whole plot 81 82 83 WI w2 

1 0.24 0.48 0.29 -1 -1 
1 0.20 0.80 0.00 -1 -1 
1 0.00 0.40 0.60 -1 -1 
1 0.50 0.18 0.32 -1 -1 
2 0.50 0.50 0.00 -1 -1 
2 0.00 0.40 0.60 -1 -1 
2 0.22 0.18 0.60 -1 -1 
2 0.00 0.80 0.20 -1 -1 
3 0.20 0.80 0.00 -1 1 
3 0.00 0.40 0.60 -1 1 
3 0.50 0.18 0.32 -1 1 
3 0.50 0.50 0.00 -1 1 
4 0.24 0.48 0.29 -1 1 
4 0.00 0.80 0.20 -1 1 
4 0.50 0.50 0.00 -1 1 
4 0.22 0.18 0.60 -1 1 
5 0.50 0.18 0.32 1 -1 
5 0.00 0.80 0.20 1 -1 
5 0.22 0.18 0.60 1 -1 
5 0.50 0.50 0.00 1 -1 
6 0.24 0.48 0.29 1 1 
6 0.00 0.40 0.60 1 1 
6 0.20 0.80 0.00 1 1 
6 0.50 0.18 0.32 1 1 
7 0.00 0.40 0.60 1 1 
7 0.50 0.50 0.00 1 1 
7 0.00 0.80 0.20 1 1 
7 0.22 0.18 0.60 1 1 
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possible to establish the optimum block sizes. Our computational results have shown that 
choosing equal block sizes is not always optimal. 
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Appendix A. Proof of Theorem 1 

The information matrix of an experiment with one random blocking variable is 

= :2 { XiX - [X~ lk1 XPk2 ... 
E: 

where ki is the number of observations in the ith block and 1]1 = aU a~. 
Using Harville's (1997) Theorem lS.1.1, ~e have that 

where 

[

.1.. + k1 
1/1 

o 
C-1 = . 

o 

o 
.1.. + k2 
1/1 jJ o 

(9) 

Using Equation (6), we have that lkiXi(X/X)-lX;lki = ki - Ti + 2:iERi nil and that 
lkiXi(X/X)-lXj1kj = 2:iER;o nil if no design points are replicated within a block. The 
definitions of Ti, ni, R; and R;j can be found in Section 4.2. 
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Appendix B. Proof of Theorem 2 

Firstly, suppose that there are two blocking variables acting at bi and b2 levels respectively 
and that they are both treated as fixed. Denote by Xij the part of the design matrix X 
corresponding to the ith level of the first blocking variable and the jth level of the second 
blocking variable, and by nij the corresponding number of runs so that I:~~I I:~~I nij = n. 

The n x (p + bi + b2 - 2) design matrix for all the fixed effects can then be written as 

Xll lnll 

X I2 Inl2 

X 1b2 Inlb2 

X 2I On21 

X 22 On22 

X 2b2 On2b2 

F= 

Xb,-I,l Onbl_I,1 

X bl - I ,2 Onbl _I,2 

X bl - 1,b2 Onbl-l,b2 

X bl1 Onbll 

X bl2 Onbl2 

X blb2 Onblb2 

Denoting X:. = [X:l X:2 

the number of rows of Xi. 

can be written as 

XlX 

1~,XL 
1~2.X2. 

FlF= lnb,_". Xbl,L 

1~,X.l 
1~2X.2 

In.,b2_ ' X.,b2- I 

Onll Onll Inn Onn Onn 

Onn Onl2 Onl2 In12 Onl2 

Onn Onlb2 Onlb2 Onlb2 Onlb2 

In21 On21 In21 On21 Onl2 

In22 On22 On22 Inn On22 

1n2b2 On2b2 On2b2 On2b2 On2b2 

Onbl~I" lnbl_l,l 1nbl-I,1 Onbl-I,l Onbl_l,l 

Onbl_I,2 Inbl_I,2 Onbl_I,2 lnb, -1,2 Onbl-I,2 

Onbl-l,b2 Inb,-"b2 Onbl -l,b2 Onbl-l,b2 Onbl_l,b2 

Onbll Onbll lnbll Onbll Onbll 

Onbl2 Onbl2 Onbl2 Inbl2 Onbl2 

Onb l b2 Onblb2 Onblb2 Onblb2 Onblb2 

Xlb 1 Xl. = 
~ 2' .J [X~j X~j X~2jl, and by ni. and n.j 

and X' j ' the information matrix on the unknown fixed effects 

X~.lnl Xl I bl,L nbl-I,. 

nL 0 
0 0 

0 nbl-l,. 

nll nbl-I,l 

nI2 nbl -l,2 

nl,b2- I nbl -l,b2-1 

X\ln., 

nll 

n21 

nbl-I,l 

n.1 

0 

0 

Xl I .,b2-1 n . .b,-I 

nl,b2-1 

n2,b2 -1 

n.,b2- 1,. 

the determinant of which is equal to 

IFlFI = IXlXllN - L(XlX)-IL'-I, 
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where 
nl. 0 nll n1,b2-1 

0 0 n21 n2,b2-1 

N= 
0 nbl-1,. nbl-1,1 nbl-1,b2-1 

nll nbl-1,1 n.1 0 
n12 nbl-1,2 0 0 

n1.b2-1 nbl-1,b2-1 0 n.,b2-1,. 

and 
L' = [X~.lnl. ... X' 1 bl,l. nbl-l,. X~lln.l . .. X~,b2-11n.,b2_1] . 

Using (6), it is easy to see that the matrix product L(X/X)-lL' only depends on the 
assignment of the design points to the blocks and not on their factor levels. As a result, 
the determinant of the information matrix can be split in two parts: one that depends on 
the design points and one that only depends on the assignment. A proof for more than 
two blocking variables that are treated as fixed can be constructed in the same way. 

Appendix C. Proof of Theorem 3 

Now suppose that there are BR blocking variables acting at b1 , b2 , ..• , bBR levels, that 
the blocking variables are treated as random and that the block sizes are equal. Using 
the results of Donev and Goos (2002), it can be seen that the information matrix is given 
by 

BR bi 

M = :2 {XIX - L L ci(X:jlaJ(l~iXij) + d(X/ln)(l~X)}, 
E: i=l j=l 

X BOB lOB X'l. J [~ 0 '; 

o 

o 
-d 

where ai = nlbi, and c; (i = 1,2, ... , B R ) and d are constants that depend on the block 
size, the numbers of levels of the blocking variables and the variance components only. 
This matrix is similar to (9), so that its determinant can be written as a product of two 
determinants that are independent of each other. 
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