171,591 research outputs found

    Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT-Γ Mie

    Get PDF
    A mixed-integer non-linear programming optimisation framework is formulated and developed that combines a molecular-based, group-contribution equation of state, SAFT-γ Mie, with a thermodynamic description of an organic Rankine cycle (ORC) power system. In this framework, a set of working fluids is described by its constituent functional groups (e.g., since we are focussing here on hydrocarbons: –CH3, –CH2–, etc.), and integer optimisation variables are introduced in the description the working-fluid structure. Molecular feasibility constraints are then defined to ensure all feasible working-fluid candidates can be found. This optimisation framework facilitates combining the computer-aided molecular design of the working fluid with the power-system optimisation into a single framework, thus removing subjective and pre-emptive screening criteria, and simultaneously moving towards the next generation of tailored working fluids and optimised systems for waste-heat recovery applications. SAFT-γ Mie has not been previously employed in such a framework. The optimisation framework, which is based here on hydrocarbon functional groups, is first validated against an alternative formulation that uses (pseudo-experimental) thermodynamic property predictions from REFPROP, and against an optimisation study taken from the literature. The framework is then applied to three industrial waste-heat recovery applications. It is found that simple molecules, such as propane and propene, are the optimal ORC working fluids for a low-grade (150 °C) heat source, whilst molecules with increasing molecular complexity are favoured at higher temperatures. Specifically, 2-alkenes emerge as the optimal working fluids for medium- and higher-grade heat-sources in the 250–350 °C temperature range. Ultimately, the results demonstrate the potential of this framework to drive the search for the next generation of ORC systems, and to provide meaningful insights into identifying the working fluids that represent the optimal choices for targeted applications. Finally, the effects of the working-fluid structure on the expander and pump are investigated, and the suitability of group-contribution methods for evaluating the transport properties of hydrocarbon working-fluids are considered, in the context of performing complete thermoeconomic evaluations of these systems

    Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    Get PDF
    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. Pure fluids and mixtures are compared to see how mixed working fluids affect performance and important design parameters. The results indicate that mixed working fluids can increase the net power output of the cycle, while reducing the pressure levels. The maximum net power output is obtained by fluids with a critical temperature close to half of the hot fluid inlet temperature. For some mixtures we find the maximum net power when the temperature glide of condensation matches the temperature increase of the cooling water, while for other mixtures there are large differences between these two parameters. Ethane is a fluid that obtains a large net power increase when used in mixtures. Compared to pure ethane, an optimized ethane/propane mixture attains a 12.9% net power increase when the hot fluid inlet temperature is 120_C and a 11.1% net power increase when the hot fluid inlet temperature is 90°C

    Parameters affecting the efficiency of a heat transformer with a particular focus on the heat solution

    Get PDF
    The heat transformer is a reverse cycle absorption machine, suitable for the direct exploitation of heat wastes and solar energy. Part of these wastes are “transformed” into thermal energy at a higher temperature than the one provided. Hence some studies concern the evaluation of the performances of the working fluids used. They must ensure a high level of efficiency which, as for the conventional absorption machines, depends on several parameters. One of these parameters is the heat solution: it is defined as the heat absorbed when a mole of a given component is mixed with the amount of the other component required to generate the desired solution at a certain temperature and pressure. This is the reason why the decision was to examine its influence with respect to machines exerting two different fluids which are generally used. The first one is NH3-H2O, whereas the second is H2O-LiBr; they used as refrigerating substances ammonia and water respectively and as absorption substances water and lithium bromide. Through an analytical modeling and the processing of experimental data provided by the bibliography, it was possible to show how, for these fluids, the terms of the sensible heat represent a moderate fraction of the global energy balance, at one condition though: highly efficient recovery exchangers must be present. Moreover there were reported values of the refrigeration effect of the order of thousands of kJ/kg with satisfying responses energetically speaking. Then a high stability of the fluid NH3-H2O was revealed, as testified by the high value of the difference between the concentration of the refrigerator in the absorber and the concentration of the refrigerator in the generato

    On the miscible Rayleigh-Taylor instability: two and three dimensions

    Get PDF
    We investigate the miscible Rayleigh-Taylor (RT) instability in both 2 and 3 dimensions using direct numerical simulations, where the working fluid is assumed incompressible under the Boussinesq approximation. We first consider the case of randomly perturbed interfaces. With a variety of diagnostics, we develop a physical picture for the detailed temporal development of the mixed layer: We identify three distinct evolutionary phases in the development of the mixed layer, which can be related to detailed variations in the growth of the mixing zone. Our analysis provides an explanation for the observed differences between two and three-dimensional RT instability; the analysis also leads us to concentrate on the RT models which (1) work equally well for both laminar and turbulent flows, and (2) do not depend on turbulent scaling within the mixing layer between fluids. These candidate RT models are based on point sources within bubbles (or plumes) and interaction with each other (or the background flow). With this motivation, we examine the evolution of single plumes, and relate our numerical results (of single plumes) to a simple analytical model for plume evolution.Comment: 31 pages, 27 figures, to appear in November issue of JFM, 2001. For better figures: http://astro.uchicago.edu/~young/ps/jfmtry08.ps.

    Health Hazard Manual For Cutting Oils, Coolants, and Metalworking Fluids

    Get PDF
    [Excerpt] The metalworker can be exposed to cutting oils during application by two basic routes of entry: skin contact and inhalation. The higher risk jobs tend to be those with high cutting speeds, heavy oil flow, and continuous contact, which may result in the worker being splashed with oil on the skin or clothing. The oil may remain on the skin for some time and oil-soaked clothing may be worn all shift. Cutting oils may be applied manually, by an air-carried mist, or by a continuous flood. When flooding is used, the oil is delivered by a pump, piping, and nozzle to the cutting zone. With this method the tool, work, and chip are flooded. (Used fluid is then collected in the chip pan and returned by gravity to the pump sump.) Inhalation of cutting oil mists may occur because of the nature of coolant delivery or because of the high temperatures and speeds generated at the cutting tool\u27s working edge. When the mist stream method of coolant delivery is used, much of it evaporates on contact with the hot tool, workpiece or chip. In addition to the intentional production of oil mists, vaporized oil can also be generated by the forces of the rapidly spinning workpiece or tool, or by the vaporization of the fluid from the heat of the cutting process

    Evolution of a double-front Rayleigh-Taylor system using a GPU-based high resolution thermal Lattice-Boltzmann model

    Full text link
    We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a 2 dimensional geometry using a highly optimized thermal Lattice Boltzmann code for GPUs. The novelty of our investigation stems from the initial condition, given by the superposition of three layers with three different densities, leading to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long time asymptotic regime. We also provide details on the optimized Lattice-Boltzmann code that we have run on a cluster of GPU

    Design sensitivity analysis of using various in-tube condensation correlations for an air-cooled condenser for ORCs

    Get PDF
    The study is related to the evaluation of using 19 condensation heat transfer correlations in an annular finned horizontal round tube V-shaped air-cooled condenser design problem for a representative low-temperature waste heat recovery Organic Rankine Cycle (ORC) case. The condensation is realized through cold air provided by the fan suction at a mass flow rate of 90,35 kg/s, whereas the working fluid mass flow rate is 7,8 kg/s. The considered condensation temperature is 40°C which corresponds to a saturation pressure of 1,17 bar. The ambient air is considered to be 15°C. The investigated working fluid is SES36. For a given set of geometrical constraints, an iterative condenser design model is implemented. All considered correlations are applied separately for the same boundary conditions. The design sensitivity on the overall heat transfer coefficient, total transferred heat, required fan power, air- and refrigerant-side pressure drops is assessed. By those means, the engineering error margin of using different calculation tools in designing air-cooled condensers for ORC is reported

    Cytological Findings of 140 Bile Samples from Dogs and Cats and Associated Clinical Pathological Data

    Get PDF
    BACKGROUND: Cholecystocentesis can be part of the diagnostic workup of hepatobiliary disease in small animals, but literature on cytological evaluation of bile is scant. OBJECTIVES: To determine the diagnostic utility of cytological assessment of bile aspirates. ANIMALS: Fifty‐six and 78 client‐owned dogs and cats, respectively, with bile collected by cholecystocentesis and submitted to our diagnostic laboratory between 1999 and 2014. METHODS: Retrospective study describing cytological findings of bile, concurrent bacterial culture results, hematological and serum biochemical data, gallbladder biopsy results, as well as final diagnosis and complications after cholecystocentesis. RESULTS: Infectious agents were found in 30% of canine and 22% of feline bile aspirates, and inflammation in 5% and 19% respectively. Presence of microorganisms was more often detected on cytological examination (24%) than by culture (21%). The most common bacterial isolates were Escherichia coli and Enterococcus spp., isolated from 14.8% and 6.7% of cultured samples respectively. Only increased canine pancreatic lipase immunoreactivity concentration (cPLI) was significantly associated with the presence of microorganisms, inflammatory cells, or both in bile. Clinically relevant complications of cholecystocentesis occurred in 2 dogs. The majority of the animals undergoing cholecystocentesis suffered from hepatic, pancreatic, gastrointestinal disease, or a combination thereof. CONCLUSIONS AND CLINICAL IMPORTANCE: Cytological examination of bile is inexpensive and straightforward, and yields diagnostically relevant information that precedes and complements bacterial culture
    corecore