695,701 research outputs found
Risk Minimization, Regret Minimization and Progressive Hedging Algorithms
This paper begins with a study on the dual representations of risk and regret
measures and their impact on modeling multistage decision making under
uncertainty. A relationship between risk envelopes and regret envelopes is
established by using the Lagrangian duality theory. Such a relationship opens a
door to a decomposition scheme, called progressive hedging, for solving
multistage risk minimization and regret minimization problems. In particular,
the classical progressive hedging algorithm is modified in order to handle a
new class of linkage constraints that arises from reformulations and other
applications of risk and regret minimization problems. Numerical results are
provided to show the efficiency of the progressive hedging algorithms.Comment: 21 pages, 2 figure
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
The affine rank minimization problem consists of finding a matrix of minimum
rank that satisfies a given system of linear equality constraints. Such
problems have appeared in the literature of a diverse set of fields including
system identification and control, Euclidean embedding, and collaborative
filtering. Although specific instances can often be solved with specialized
algorithms, the general affine rank minimization problem is NP-hard. In this
paper, we show that if a certain restricted isometry property holds for the
linear transformation defining the constraints, the minimum rank solution can
be recovered by solving a convex optimization problem, namely the minimization
of the nuclear norm over the given affine space. We present several random
ensembles of equations where the restricted isometry property holds with
overwhelming probability. The techniques used in our analysis have strong
parallels in the compressed sensing framework. We discuss how affine rank
minimization generalizes this pre-existing concept and outline a dictionary
relating concepts from cardinality minimization to those of rank minimization
Automata Minimization: a Functorial Approach
In this paper we regard languages and their acceptors - such as deterministic
or weighted automata, transducers, or monoids - as functors from input
categories that specify the type of the languages and of the machines to
categories that specify the type of outputs. Our results are as follows:
A) We provide sufficient conditions on the output category so that
minimization of the corresponding automata is guaranteed.
B) We show how to lift adjunctions between the categories for output values
to adjunctions between categories of automata.
C) We show how this framework can be instantiated to unify several phenomena
in automata theory, starting with determinization, minimization and syntactic
algebras. We provide explanations of Choffrut's minimization algorithm for
subsequential transducers and of Brzozowski's minimization algorithm in this
setting.Comment: journal version of the CALCO 2017 paper arXiv:1711.0306
- …
