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1 Introduction

At the core of stochastic optimization is the problem of minimizing E
(
f(x(ξ), ξ)

)
,

where ξ is an m-dimensional random vector. For each realization (i.e., sce-
nario) of ξ, f(·, ξ) : Rn → (−∞,+∞] is a closed function, x(ξ) ∈ Rn is a
decision vector (which naturally depends on ξ), and E stands for the expec-
tation. For the applications and algorithms we are concerned, we may assume
that ξ ∈ L 2

m, the Hilbert space of m-dimensional random vectors with support
Ξ. Correspondingly, we assume that the solution to the problem is a response
function x(·) : Ξ → Rn and F

(
x(·)

)
:= E

(
f(x(ξ), ξ)

)
is a proper closed convex

functional of x(·).
As explained in detail in Rockafellar (2007) and Shapiro et al. (2009), it is

reasonable to replace E
(
f(x(ξ), ξ)

)
by a more general risk measureR

(
f(x(ξ), ξ)

)
,

where R is a functional defined on the 1-dimensional probability space L 2
1

(L 2 for short), in which norm and inner product are respectively defined as

‖ζ‖2 :=
[
E(ζ2)

]1/2
and 〈ζ, η〉 := E(ζη). For notational convenience, we shall

specifically use η and ζ to represent 1-dimensional random vectors, i.e., random
variables, while use other Greek letters to denote general (probably, higher-
dimensional) random vectors. Instead of minimizing E

(
f(x(ξ), ξ)

)
, we turn to

the problem
min
x(·)∈X

R
(
f(x(ξ), ξ)

)
, (1)

where X is a certain feasible set of x(·). For convenience of discussion, we
henceforth call (1) the risk minimization problem. This idea can be extended
to include “risk constraints” Ri

(
fi(x(ξ), ξ)

)
≤ 0, i = 1, ..., s, in the definition

of the feasible set X.
For both theoretical and practical purposes, we prefer R to be “coherent

and averse”. A risk measure R : L 2 → (−∞,+∞] is coherent if it satisfies
the following axioms (Artzner et al. 1999, Rockafellar 2007).

(A1) R(C) = C for all constant C (“constancy equivalence”),
(A2) R((1− a)ζ + aη) ≤ (1− a)R(ζ) + aR(η) for a ∈ [0, 1] (“convexity”),
(A3) R(ζ) ≤ R(η) if ζ ≤ η almost everywhere (“monotonicity”),
(A4) R(ζ) ≤ C when ‖ζk − ζ‖2 → 0 with R(ζk) ≤ C (“closedness”) and
(A5) R(aζ) = aR(ζ) for a > 0 (“positive homogeneity”).

We say that the risk measure R is averse, if it satisfies axioms (A1), (A2),
(A4), (A5), and

(A6) R(ζ) > E(ζ) for all non-constant ζ.

Following Rockafellar and Royset (2015), we say a risk measure is regular if
it satisfies (A1), (A2), (A4) and (A6).

Risk minimization has an intrinsic connection with what we call regret
minimization. Paired with the notion of risk measure, there is a notion of
regret measure, denoted by V. In operations research the notion of regret is
associated to the notion of utility, namely, the regret is regarded as the negative
utility. That is

V(ζ) = −U(−ζ),
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where U is a certain utility functional of −ζ, noting that −ζ is the “gain” if
ζ stands for the “loss” (which is adopted throughout this paper). Therefore,
all our subsequent results could have corresponding interpretations in utility
models.

Similarly to coherent risk measures, we define coherent regret measures V
as follows.1 A functional V : L 2 → (−∞,+∞] is called a coherent regret
measure if it satisfies the following axioms.

(B1) V(0) = 0 (“zero equivalence”),
(B2) V((1− a)ζ + aη) ≤ (1− a)V(ζ) + aV(η) for a ∈ [0, 1] (“convexity”),
(B3) V(ζ) ≤ V(η) if ζ ≤ η almost everywhere (“monotonicity”),
(B4) V(ζ) ≤ 0 when ‖ζk − ζ‖2 → 0 with V(ζk) ≤ 0 (“closedness”), and
(B5) V(aζ) = aV(ζ) for a > 0 (“positive homogeneity”).

We say that the regret measure V is averse, if it satisfies axioms (B1), (B2),
(B4), (B5) and

(B6) V(ζ) > E(ζ) for all nonzero ζ.

In addition, we say that a regret measure is regular if it satisfies (B1), (B2),
(B4) and (B6).

In the theory of risk quadrangle of Rockafellar and Uryasev (2013), a risk
measure could be understood as the “certainty-uncertainty trade-off” of a re-
gret measure, namely, a risk measure could be defined through a regret measure
as

R(ζ) = inf
y∈R

{
y + V(ζ − y)

}
, (2)

where y is a single real variable. This formula generalizes the formula for
conditional value-at-risk (CVaR for short), popularized by Rockafellar and
Uryasev (2000).

Rockafellar and Royset (2015, Theorem 2.2) showed that for regular risk
and regret measures, the “inf” in (2) can be replaced by “min” because the
infimum is attainable. This then implies that the same is true for coherent
averse risk and regret measures. We moreover in this paper deduce a result
that describes the relationship between the dual representations of risk and
regret measures. Based on that result and earlier work on duality of risk mea-
sures, we determine the regret envelopes (defined later) of several popular
regret measures and provide a general approach to finding V in (2) given R in
Section 2.

In terms of optimization, formula (2) opens a door for converting a risk
minimization problem to a regret minimization problem; i.e.,

min
x(·)∈X

R
(
f(x(ξ), ξ)

)
⇐⇒ min

x(·)∈X,y∈R

[
y + V

(
f(x(ξ), ξ)− y

)]
, (3)

which would allow to minimize a coherent averse risk measure by a decom-
position approach if V can be expressed as an expectation of a function of

1 The notion of coherent regret measure appears to be new in the literature.
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ξ. Starting from Section 3, the second part of this paper is concerned with
a computational method for risk minimization (1) and the corresponding re-
gret minimization (3). We introduce the progressive hedging algorithm, orig-
inally developed by Rockafellar and Wets (1991) for solving multistage con-
vex stochastic optimization problems and later extended to solving monotone
stochastic variational inequality problems (Rockafellar and Sun, 2019). We
explain how this algorithm could be used to solve (1) and (3). Since in cer-
tain circumstances the original progressive hedging algorithm cannot be used
due to a new “linkage” constraint that links different ξ into one constraint,
a modified progressive hedging algorithm is proposed. Compared with other
algorithms for multistage stochastic optimization, say for example, the distri-
butionally robust approach of Wiesemann et al. (2014), progressive hedging is
less restrictive in the sense that it requires no linear decision rule, can handle
more general nonlinear objective functions and is easily expandable to more
than two stages. Numerical results will be presented in Section 4, where we
show that the algorithm is fairly efficient for solving middle-sized coherent and
averse risk/regret minimization problems.

The first paper working on the format of problem (3) in the context of
progressive hedging algorithms is Rockafellar (2018) that was concentrated on
the CVaR measure and only briefly mentioned the general case in its last sec-
tion. This paper could be thought of as a further development of Rockafellar’s
work with the following contributions.

– We develop a dual theory for the relationship between coherent risk mea-
sures and regret measures and use it as a stepping stone in developing new
models of minimizing regret measures, which may expand the applicability
of stochastic optimization approaches.

– As certain linkage constraints may arise in the above models, these models
may not be in the required decomposable format of the original progres-
sive hedging algorithm. We modify the progressive hedging algorithm for
handling these cases. The modified progressive hedging algorithm takes
advantage of the hidden decomposability of the problem and keeps the
computational effort at the original level.

– We provide numerical evidence to show the power of the progressive hedg-
ing algorithms. The tested samples include problems from real applications
and randomly generated ones that are more of “practical size”, compared
to the examples in the literature of progressive hedging algorithms.

2 The dual representation of risk and regret measures

It is well known (Rockafellar, 2007) that any coherent risk measure R has a
dual representation; that is, there is a nonempty, convex and weakly closed2

2 Since for convex sets in L 2 strong closedness and weak closedness coincide, we shall not
differentiate strong and weak closedness in statements on convex sets below.
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set Q ⊂ L 2, which can be shown to be unique, called “the risk envelope” of
R, such that for any ζ ∈ L 2,

R(ζ) = sup
η∈Q
〈ζ, η〉 . (4)

Moreover, Q is a subset of

P :=
{
η ∈ L 2 : E(η) = 1, η ≥ 0

}
.

More detailed analysis can be seen in Ang et al. (2018) and Rockafellar and
Uryasev (2013).

The dual representation for V can be similarly established. By convex anal-
ysis (Clarke (2013), Theorem 4.25, the finite-dimensional version of it appeared
in Rockafellar (1970), Theorem 13.2), any functional that satisfies (B1)-(B5)
can be represented as a specific support function. That is, there is a unique,
nonempty, convex, and closed Q̃ ⊂ L 2, called “the regret envelope of V”, such
that

V(ζ) = sup
η∈Q̃
〈ζ, η〉 , (5)

where Q̃ is a subset of

P̃ :=
{
η ∈ L 2 : η ≥ 0

}
.

In the next, starting with the basic equation (2), we investigate the rela-
tionship between Q and Q̃, and later present several explicit descriptions of Q
and Q̃ for certain popular risk and regret measures.

2.1 Relationship between risk and regret envelopes

The next proposition formalizes the statement (2) on risk and regret measures.

Proposition 1 For any risk measure R satisfying (A1) and (A2), which in-
cludes coherent, averse, or regular risk measures as special cases, there exists at
least one regret measure V of the same type (e.g., coherent, averse, or regular),
such that (2) is valid with inf being replaced by min.

Proof. Just note that Axioms (A1) and (A2) imply y+R(ζ−y) = R(y+ζ−y)
(Rockafellar et al., 2006) and R itself can be a candidate for V to satisfy (2).
�

Remarks.

(i) It should be noted that the opposite of Proposition 1 is not true; for in-
stance, even if V is a coherent regret measure, the functional R obtained
via (2) may not be a risk measure. Say, if V(ζ) = 2E(ζ), then V is a coher-
ent regret measure by direct verification of (B1)-(B5), but the functional
R obtained via (2) ≡ −∞, so this R is not a risk measure. Hence it is
important to find the conditions for V to guarantee R defined via (2) to
be an appropriate risk measure.
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(ii) For a given coherent risk measure R, there may be more than one V
satisfying relationship (2). For instance, let V1(ζ) = E(ζ+) and V2(ζ) =
E(ζ+) + E(ζ), where ζ+ := max(ζ, 0). Then it can be shown that R1(ζ) =
R2(ζ) = E(ζ) (see Section 2.2.2).

The next theorem establishes the relationship among coherent R, V, Q and
Q̃.

Theorem 1 Suppose that R is a coherent risk measure with the dual repre-
sentation (4) and V is a coherent regret measure with the dual representation
(5), where Q̃ is weakly compact. Then R and V satisfy relationship (2) if and
only if Q = Q̃ ∩ P.

Proof. Fix ζ ∈ L 2, let

L(η, y) := E(ζη) + y[1− E(η)]

for y ∈ R and η ∈ Q̃. From weak compactness of Q̃ and the Fan minimax
theorem (Fan, 1953, Theorem 2), we have

sup
η∈Q̃

inf
y∈R

L(η, y) = inf
y∈R

sup
η∈Q̃

L(η, y). (6)

Since

inf
y∈R

L(η, y) =

{
E(ζη), if E(η) = 1,
−∞, otherwise,

we have
sup
η∈Q̃

inf
y∈R

L(η, y) = sup
η∈Q̃∩P

E(ζη). (7)

Notice that by (5) and the definition of L(η, y), we have

inf
y∈R

sup
η∈Q̃

L(η, y) = inf
y∈R

{
y + V(ζ − y)

}
, where V(ζ) = sup

η∈Q̃
E(ζη). (8)

Thus by (6),(7) and (8), we obtain

sup
η∈Q̃∩P

E(ζη) = inf
y∈R

{
y + V(ζ − y)

}
. (9)

If Q = Q̃ ∩ P, then by (9) we have

sup
η∈Q

E(ζη) = inf
y∈R

{
y + V(ζ − y)

}
.

In view of (4), it follows that the relationship (2) holds for R and V.
Conversely, if R and V have relationship (2), then by (2) and (9) we get

R(ζ) = sup
η∈Q̃∩P

E(ζη).

It is easy to see that Q̃ ∩ P is a nonempty, convex and closed subset of L 2,
and therefore, it is a risk envelope of R. By the uniqueness of risk envelope,
we have Q = Q̃ ∩ P. �
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Theorem 1 has some overlapping with Theorem 2.2 in Rockafellar and
Royset (2015), as well as the Envelope Theorem in Rockafellar and Uryasev
(2013). However, the relationship on the two envelopes appears to be new. Note
that the result is derived by an elementary approach without involving the
conjugate function theory in paired space (Rockafellar, 1966, 1974). Theorem
1 provides a way to determine a coherent regret measure V corresponding to
a given coherent risk measure R as follows. Given a coherent risk measure R,
find its risk envelope Q, and relax the condition “E(η) = 1” to get Q̃, then
(5) determines the corresponding V. Note that since there may be more than
one way to relax the condition “E(η) = 1”, there may be more than one V
corresponding to the same R as well.

A complication for applying Theorem 1 is the requirement of weak com-
pactness for Q̃. Since under the one-to-one correspondence between nonempty
closed convex sets in L 2 and closed positive homogeneous convex functions
on L 2 (Rockafellar, 1966), the set Q̃ is weakly compact if and only if the
function V is continuous everywhere. Thus, this obstacle can be removed by
checking the global continuity of V on L 2, which is specifically true if the
random variable has a finite discrete distribution (Rockafellar and Uryasev,
2013) as in the case when the progressive hedging algorithm is considered. We
write this observation as a corollary below.

Corollary 1 Theorem 1 remains to be true if the condition “Q̃ is weakly com-
pact” is replaced by “V is continuous everywhere”.

2.2 Examples of popular Q and Q̃

This subsection provides examples of popular pairs of risk and regret measures.
Some of the conclusions have appeared in Rockafellar and Uryasev (2013) and
Ang et al. (2018), but no detail of the regret envelopes was given before.
We also display the respective risk and regret functions for the purpose of
algorithmic development in the following sections.

2.2.1 Optimized certainty equivalence (OCE) and CVaR

Given 0 ≤ γ2 < 1 ≤ γ1, let O be the OCE-measure introduced by Ben-Tal
and Teboulle (2007).

O(ζ) := inf
y∈R

{
y + E [r(ζ − y)]

}
,

where r(ζ) = γ1ζ+ − γ2ζ− with ζ− := −min(ζ, 0) and ζ+ := max(ζ, 0).
It is shown in Ang et al. (2018) that the OCE-measure is a coherent risk

measure with risk envelope

Qγ1,γ2 = {η : γ2 ≤ η ≤ γ1, E(η) = 1} .

Removing the condition “E(η) = 1”, we get a set

Q̃γ1,γ2 = {η : 0 ≤ γ2 ≤ η ≤ γ1} .
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Therefore, the corresponding regret measure is

Vγ1,γ2(ζ) = sup
η∈Q̃γ1,γ2

E(ζη) = γ1E(ζ+)− γ2E(ζ−).

Note that Vγ1,γ2 is finite and convex on L 2, so it is continuous everywhere.

Therefore Q̃ is weakly compact and Theorem 1 is applicable here.

In particular, if we take γ1 = (1−α)−1 and γ2 = 0, where 0 ≤ α < 1, then
the OCE-measure becomes the measure of CVaR α. The corresponding regret
measure is

Vα(ζ) =
1

1− α
E(ζ+) with Q̃α =

{
η : 0 ≤ η ≤ 1

1− α

}
. (10)

Then formula (2) is in fact the “minimization formula” of CVaR, i.e.,

CVaR α(ζ) = inf
y∈R

{
y +

1

1− α
E(ζ − y)+

}
,

which is a consequence of Theorem 1.

It is interesting to observe that OCE-measure is representable by CVaR,
namely O(ζ) = γ2E(ζ) + CVaR α(ζ), where α = 1− (γ1 − γ2)−1. Thus OCE-
measure and CVaR are in a sense equivalent.

2.2.2 Expectation as risk measure

This is a special case of CVaR when α = 0 and Q = {1}. That is,

R(ζ) = E(ζ).

By formula (10), a candidate for the corresponding regret measure is

V(ζ) = E(ζ+).

On the other hand, since Q = {η : 1 ≤ η ≤ 2} also satisfies Q ∩ P = {1}, we
find that

V(ζ) = sup
1≤η≤2

E(ζη)

= sup
0≤η≤1

E(ζ + ζη)

= E(ζ) + E(ζ+)

is another candidate for the corresponding regret measure. Since both V and
V are continuous on L 2, both Q and Q̃ are weakly compact, it is valid to
apply Theorem 1 in these cases. Thus both V and V satisfy (2) for R = E.
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2.2.3 Worst case as risk measure

This risk measure is defined as

R(ζ) = esup (ζ),

where esup is the essential-sup function (einf is similarly defined). Note that
the worst case risk measure may not be finite and the corresponding risk
envelopeQ = P is not bounded. However we can directly verify that Theorem 1
is still true with Q̃ = P̃, and,

V(ζ) =

{
0, if ζ ≤ 0 almost surely,

+∞, otherwise.

2.2.4 The mean-deviation-penalty risk measure

Fix 0 ≤ a ≤ 1. Define the Mean-deviation-penalty risk measure as

R(ζ) = E(ζ) + a‖
[
ζ − E(ζ)

]
+
‖2

for all ζ ∈ L 2. From Ang et al. (2018), we know that R is a coherent and
averse risk measure with risk envelope

Q = {η : η ≥ 0, E(η) = 1, ‖η − einf η‖2 ≤ a} . (11)

We next find the corresponding coherent regret measure V for it. If we simply
get rid of the restriction “E(η) = 1” from (11), we will get an unbounded
subset of L 2. To avoid it, note that η ≥ 0 and E(η) = 1 together imply
0 ≤ einf η ≤ 1. Therefore, we may use

Q̃ = {η : 0 ≤ einf η ≤ 1, ‖η − einf η‖2 ≤ a} , (12)

which is bounded and satisfies Q̃ ∩ P = Q. For any ζ ∈ L 2 and η ∈ Q̃, we
have

E(ζη) ≤ E [ζ+(η − einf η)] + einf η · E(ζ) ≤ a‖ζ+‖2 + [E(ζ)]+ . (13)

Furthermore, (13) becomes equalities when η = 1{E(ζ)≥0} +
aζ+
‖ζ+‖2

(0/0 is

defined as 0). Therefore,

V(ζ) = a‖ζ+‖2 + [E(ζ)]+ (14)

is a candidate for the regret measure corresponding to the mean-deviation-
penalty risk measure. The global continuity of V guarantees the weak com-
pactness of Q̃. Hence Theorem 1 is applicable.

We may check Theorem 14 for this case directly. For y ∈ R, we have

y + V(ζ − y) = y +
(
E(ζ)− y

)
+

+ a‖(ζ − y)+‖2

=

{
y + a‖(ζ − y)+‖2, if y ≥ E(ζ),
E(ζ) + a‖(ζ − y)+‖2, if y < E(ζ).

(15)
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Note that y + V(ζ − y) is decreasing in y when y < E(ζ) and increasing in y
when y ≥ E(ζ), and so it reaches its minimum when y = E(ζ). Then (2) holds
for the mean-deviation-penalty risk measure with Q̃ and V being specified by
(12) and (14), respectively.

2.3 Aversity

Aversity of risk measures is important in many applications of risk minimiza-
tion. It was proven in Ang et al. (2018) that a sufficient condition for aver-
sity is that {1} is a relative interior point of Q̃ with respect to the plane
{η : E(η) = 1} and this condition is also necessary if the probability space
is finite. As is shown in Ang et al. (2018), all of the risk measures discussed
above except the expectation are coherent and averse. The averseness can be
obtained from Theorem 2.2 of Rockafellar and Royset (2015) as well.

2.4 About max and convex combination of risk and regret measures

In Rockafellar and Uryasev (2013), as well as in Rockafellar and Royset (2015),
it was shown that some properties of risk measure and regret measure, such as
regularity, convexity, monotonicity, and positive homogeneity can be derived
from each other. However, some other properties are not preserved between
these two measures. Here are two examples. In Section 2.2.2, we proved that
regret measures E(ζ+) and E(ζ) +E(ζ+) correspond to the same risk measure
E(ζ). Note that the maximum of the two regret measures is

max{E(ζ+),E(ζ) + E(ζ+)} = [E(ζ)]+ + E(ζ+),

which turns out to correspond to R(ζ) = E(ζ)+E(ζ−E(ζ))+ by using similar
analysis to (15).

This example demonstrates that the maximum of several regret measures
may not generate the maximum of the respective risk measures.

We further notice that the relationship of convex combination is not pre-
served, either. The following example demonstrates this point.

Let V1(ζ) := E(ζ+) and V2(ζ) := E(ζ) +E(ζ+) be two regret measures. Fix
0 < a < 1 and let

V(ζ) := (1− a)V1(ζ) + aV2(ζ) = aE(ζ) + E(ζ+).

It is known that V1(ζ) and V2(ζ) correspond to the same risk measure E(ζ).
Next, we calculate the risk measure corresponding to V(ζ). It is easy to see
that

y + V(ζ − y) = aE(ζ) + (1− a)y + E [(ζ − y)+] .

Hence we have

inf
y∈R

{
y + V(ζ − y)

}
= aE(ζ) + (1− a) inf

y∈R

{
y +

1

1− a
E [(ζ − y)+]

}
= aE(ζ) + (1− a)CVaR a(ζ).
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Thus, the risk measure generated by aV1 + (1−a)V2 through (2) is not aR1 +
(1− a)R2 = E(ζ) for 0 ≤ a < 1. This example shows that the relationship of
convex combination does not pass from regret measures to the corresponding
risk measures.

3 The progressive hedging algorithm for risk/regret minimization

3.1 A multistage perspective of risk/regret minimization

The next focal point of this paper is the application of the progressive hedging
algorithm (PHA) for the multistage risk and regret minimization. Let the
objective function of (3) be the risk or regret measure of total N decision
periods in the form E

(
f(x(ξ), ξ)

)
, and let Ξ consist of a finite number of

scenarios. We aim at determining an optimal response function in the form of

x(·) : ξ 7→ x(ξ) = (x1(ξ), . . . , xN (ξ))T ∈ Rn1 × · · · × RnN = Rn,

where “T” stands for the transpose. Let Hn be the space of all such functions
x(·) endowed with the expectation inner product

〈x(·), w(·)〉 := E
(
x(ξ)Tw(ξ)

)
=
∑
ξ∈Ξ

p(ξ)

N∑
k=1

xk(ξ)Twk(ξ), (16)

which makes Hn into a finite-dimensional Hilbert space. A notational differ-
ence ought to be emphasized. By x(·) we mean a function from Ξ to Rn; but
by x(ξ) we mean the image of ξ under the mapping x(·), where ξ is a certain
scenario in Ξ.

The multistage nature of the minimization problems requires that ξ be
disclosed gradually in the form ξ = (ξ1, . . . , ξN ), where ξi is revealed only
after xi(ξ) is made, but before xi+1(ξ) is determined. A consequence of this
fact is that the mappings x(·) must be nonanticipative in the sense that x(·)
belongs to the so-called nonanticipativity subspace N of Hn, where

N :=

{
x(·) ∈Hn :

∀ k, xk(ξ1, . . . , ξk−1, ξk, . . . , ξN )
does not depend on ξk, . . . , ξN

}
.

In addition, suppose every decision x(ξ) must satisfy a set of constraints and
these constraints generally depend on ξ. We write this fact as a constraint for
x(·)

x(·) ∈ C ⊂Hn, which means x(ξ) ∈ C(ξ) ∀ξ ∈ Ξ,

where each C(ξ) refers to a nonempty closed convex subset of Rn and the set
C therefore denotes a nonempty closed convex subset of Hn.
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We are now ready to clarify the exact meaning of the regret minimization
(3) in the multistage setting. Let X = N ∩ C be the feasible set of (3), con-
sisting of all response functions x(·) ∈Hn that are nonanticipative and satisfy
constraint x(·) ∈ C. Let

z(·) =
(
y, x(·)

)
∈ L̄ := R×Hn,

and G
(
z(·)
)

: L̄ → L̄ be the mapping specified by

G
(
z(ξ)

)
= y + V

(
f(x(ξ), ξ)− y

)
.

Since y is independent of ξ and x1 is also independent of ξ under nonanticipa-
tivity, we may regard (x1, y) as x̄1. Let N̄ be the nonanticipativity subspace
L̄ and C̄ = R× C. Then the regret minimization (3) becomes

min
z(·)
G
(
z(·)
)

over all z(·) ∈ C̄ ∩ N̄ . (17)

The progressive hedging algorithm developed by Rockafellar and Wets
(1991) aims at the expectation form of G

(
z(·)
)
, namely G

(
z(·)
)

= E
(
g(z(ξ), ξ)

)
,

where g(z(ξ), ξ) is proper, closed, and convex in z(ξ) on C̄(ξ) for each ξ ∈ Ξ.

Algorithm 1 The PHA for problem (17) with G
(
z(·)
)

= E
(
g(z(ξ), ξ)

)
Step 1 (Scenario Decomposition). Given a primal-dual pair zk(·) ∈ N̄
and vk(·) ∈ M̄ := N̄⊥, solve an augmented Lagrange problem for each ξ ∈ Ξ
as follows to determine ẑk(·).

ẑk(ξ) = argmin
z∈C̄(ξ)

{
g(z, ξ)− zT vk(ξ) +

r

2
||z − zk(ξ)||2

}
. (18)

Note that the vector ẑk(ξ) in (18) exists and is uniquely determined because
the proximal term forces the function being minimized to be strongly convex.
Step 2 (Primal and Dual Update).

zk+1(·) = PN̄
(
ẑk(·)

)
and vk+1(·) = vk(·)− rPM̄

(
ẑk(·)

)
, (19)

where PN̄ and PM̄ are the projection operators to the subspaces N̄ and M̄,
respectively, and r > 0 is a suitably chosen parameter. The primal update
involves computation of a conditional expectation and the dual update is a
simple move in the space M̄. See details in Rockafellar and Wets (1991).

A key advantage of PHA is the decomposability in terms of ξ in Step 1.
Note that in Step 1 the solution of ẑk(ξ) can be found in parallel on ξ. The
aggregated ẑk(ξ) becomes the ẑk(·) for Step 2. In a nutshell, finding a solution
z(·) of (17) is generally a difficult task due to the large dimension of z(·). On
the other hand, to find a solution to (18) is easier, which amounts to solving a
strongly convex program of dimension O(n). In case of g(z(ξ), ξ) being convex
quadratic in z(ξ), problem (18) is a convex quadratic program and can be
solved by a state-of-the-art package.
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A few words on the convergence properties of PHA are in order. It is
shown in Rockafellar and Wets (1991) that Algorithm 1 generates a convergent
sequence to a solution to problem (17), as long as (17) is a convex problem
with constraint qualification and has a solution. If in addition the sets C(ξ)
are polyhedra, and the mapping ∂G is monotone and piecewise polyhedral, the
rate of convergence is linear with respect to the norm

‖
(
z(·), v(·)

)
‖r :=

(
‖z(·)‖2 + r−2‖v(·)‖2

)1/2

.

According to Proposition 2.2.4 of Sun (1986), in a finite dimensional Hilbert
space, ∂G is piecewise polyhedral if and only if G is closed and convex piecewise
quadratic (including convex piecewise linear as a special case).3

The choice of applying PHA to risk or regret model, i.e., to solve problem
(1) or (3), provides flexibility in practice as long as the objective function is
expressible as an expectation of a convex function. However, it often happens
that the regret model has a simpler form. For instance, the so-called rate-based
measure (Rockafellar and Uryasev, 2013) has

R(ζ) = r(ζ) + E
(

log
1

1− ζ + r(ζ)

)
and V(ζ) = E

(
log

1

1− ζ

)
,

where r(ζ) is the unique C ≥ esup ζ − 1 such that E
(
(1 − ζ + C)−1

)
= 1. In

this case, V(ζ) meets the requirement for objective function of PHA. Hence if
other requirements for convergence are satisfied, the problem may be solvable
by PHA. This example also says there are cases where the risk measure is not
in the form of expectation, therefore cannot be solved by PHA directly, while
the corresponding regret measure is in expectation form and can be suitable
for directly applying PHA.

It should be noted that Algorithm 1 also requires the constraints to be of
the form z(ξ) ∈ C̄(ξ), ∀ξ. This will exclude the constraint, say for example,

E
[
h(z(ξ), ξ)

]
≤ t, (20)

since this constraint involves all scenarios rather than a single scenario ξ.
Therefore it cannot be regarded as z(ξ) ∈ C̄(ξ) for certain C̄(ξ). Let us call
this type of constraints linkage constraints. Since linkage constraints arise fre-
quently in risk/regret minimization, we need to remove this obstacle by certain
modification of Algorithm 1, as we shall do below.

3.2 Occasions where a linkage constraint arises

Reformulation. Some regret measures such as the mean-deviation-penalty
may contain a single term such as

(
E[h(x(ξ), ξ)]

)
+

, either in the objective func-
tion or on the left-hand side of a constraint, the latter case happens particularly

3 A function is convex piecewise quadratic if it is convex and its domain is a union of
convex polyhedra, on each of which the function is quadratic.
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if the problem contains a CVaR constraint such as CVaR α[h(x(ξ), ξ)] ≤ β. In
this case it may be convenient to introduce a non-random variable t and a
linkage constraint

t ≥ 0 and t ≥ E
[
h(x(ξ), ξ)

]
(21)

to replace this term in the new formulation for the purpose of simplifying the
computation. Notice that in this case we obtain a convex linkage constraint if
h(·, ξ) is convex.

Other examples of linkage constraints can be found in early work on stochas-
tic variational inequality, e.g., the expected residual method of Chen and
Fukushima (2005) and Chen et al. (2012), which involve constraints on the
expectation of some residual functions.
Moment constraints. Practical applications often involve constraints on the
moments of a random cost, for example, Var [f(x(ξ), ξ)] ≤ t for some t, which
is of course a linkage constraint. As another example, in a supply chain man-
agement model (Zhong et al. 2018), a supplier must choose a policy x to
satisfy the demand ξi for N periods. Let fi(x(ξ), ξ) be the allocation function
in period i. The service standard requires

E
[
fi(x(ξ), ξ)

]
≥ βiE(ξi) ∀i = 1, ..., N.

That is, the expected proportion of demand from each period i that is fulfilled
immediately is at least βi.
Decision-dependent distributions. The probability distribution {p(ξ)} in
a risk/regret minimization problem may be dependent on the decision made.
For example, the probability of demand ξ could be influenced by the advertis-
ing decision x. Then

minE
[
f(x(ξ), ξ)

]
= min

∑
ξ∈Ξ

p(x(ξ), ξ)f(x(ξ), ξ) ⇐⇒ min
∑
ξ∈Ξ

1

|Ξ|
f̄(x(ξ), ξ),

where f̄(x(ξ), ξ) = p(x(ξ), ξ)f(x(ξ), ξ). A simple reformulation will produce a
linkage constraint (possibly, nonconvex).

It can be seen that linkage constraints arise in a wide spectrum of situ-
ations. If they are convex, they can be handled by the PHA with a suitable
modification, as described in the next section. The PHA may have to be fur-
ther modified if they are not convex. However, this is a subject too big to
study in the current paper. Hence, here and below, it is assumed that h(·, ξ)
is a convex function.

3.3 A modified PHA that can handle linkage constraints

Consider a slightly more general case than a single linkage constraint (21),
where our problem is

min
z(·)
G
(
z(·)
)

s.t. z(·) ∈ C̄ ∩ N̄ ∩ S, (22)
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where S = {z(·) : E[h(z(ξ), ξ)] ≤ t} with t ∈ Rk and h : Rn → Rk with each
of its components being a convex function. Obviously, E[h(z(ξ), ξ)] ≤ t can be
written as E[h̄(z(ξ), ξ)] ≤ 0, where h̄(z(ξ), ξ) = h(z(ξ), ξ)− t. By appropriate
re-definition of the variables and the functions, without loss of generality, we
can simply assume that the linkage constraint is of the form E[h(z(ξ), ξ)] ≤ 0.
Note that by introducing an auxiliary vector u(ξ), the following equivalence
holds:

E
[
h(z(ξ), ξ)

]
=
∑
ξ

p(ξ)h(z(ξ), ξ) ≤ 0 ⇐⇒

∃u(ξ) : h(z(ξ), ξ) ≤ u(ξ) ∀ ξ and
∑
ξ

p(ξ)u(ξ) = 0.

Thus, enlarging the dimension by setting µ(·) = (z(·), u(·)), problem (22) is
equivalent to

min
µ(·)
G
(
z(·)
)

s.t. µ(·) ∈ C′ := {η(·) : z(·) ∈ C̄, h(z(ξ), ξ) ≤ u(ξ) ∀ ξ},
µ(·) ∈ N ′ := {µ(·) : z(·) ∈ N̄ , E(u(ξ)) = 0}, (23)

where C′ is the convex constraint with the decomposable structure with respect
to ξ, and N ′ is an “enlarged nonanticipativity subspace” with its complemen-
tary subspace being

M′ := {λ(·) = (v(·), w(·)) : v(·) ∈ M̄, w(ξ) ≡ w ∀ ξ}.

Therefore, viewingN ′ as the enlarged nonanticipativity space and applying
the idea of PHA to solve problem (23), from ηk(·) ∈ N ′ and λk(·) ∈M′, i.e.,

zk(·) ∈ N̄ , E
(
uk(ξ)

)
= 0, vk(·) ∈ M̄, wk(ξ) ≡ w ∀ ξ,

Step 1 of the modified PHA is to determine µ̂k(·) via

µ̂k(ξ) = argmin
z ∈ C̄(ξ)
h(z, ξ) ≤ u

{
g(z, ξ)− zT vk(ξ) +

r

2
||z − zk(ξ)||2

−uTwk(ξ) +
r

2
||u− uk(ξ)||2

}
,

for every ξ. In this case, Step 2 of primal and dual updating turns out to be

µk+1(·) = PN ′
(
µ̂k(·)

)
⇐⇒

{
zk+1(·) = PN̄

(
ẑk(·)

)
,

uk+1(ξ) = ûk(ξ)− E
(
ûk(ξ)

)
∀ ξ,

(Note the difference of projections on N̄ and on the u-subspace) and

λk+1(·) = λk(·)− rPM′
(
µ̂k(·)

)
⇐⇒

{
vk+1(·) = vk(·)− rPM̄

(
ẑk(·)

)
,

wk+1(ξ) = wk(ξ)− rE
(
ûk(ξ)

)
∀ ξ.

(Note the differences between updating v and updating w.)
In summary, our analysis above leads to the following modified PHA for

solving problem (22).
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Algorithm 2 The PHA for risk/regret minimization with linkage
constraints

Step 1 (Scenario Decomposition). Given zk(·) ∈ N̄ , uk(·) satisfying
E(uk(ξ)) = 0, vk(·) ∈ M̄ and wk(·) such that wk(ξ) ≡ w ∀ ξ. Solve the
following optimization problem for each ξ ∈ Ξ to determine (ẑk(·), ûk(·)).

(ẑk(ξ), ûk(ξ)) = argmin
z ∈ C̄(ξ)
h(z, ξ) ≤ u

{
g(z, ξ)− zT vk(ξ) +

r

2
||z − zk(ξ)||2

−uTwk(ξ) +
r

2
||u− uk(ξ)||2

}
,

Step 2 (Primal and Dual Update).

zk+1(·) = PN̄
(
ẑk(·)

)
, uk+1(ξ) = ûk(ξ)− E

(
ûk(ξ)

)
∀ ξ,

vk+1(·) = vk(·)− rPM̄
(
ẑk(·)

)
, wk+1(ξ) = wk(ξ)− rE

(
ûk(ξ)

)
∀ ξ.

where PN̄ and PM̄ are the projection operators to the subspaces N̄ and M̄,
respectively, and r > 0 is a suitably chosen parameter.

Theorem 2 Suppose that g(·, ξ) is proper, closed, and convex for all ξ and the
problem (22) satisfies constraint qualification, by which we mean either C′ is
polyhedral and C′∩N ′ 6= ∅ or ri C′∩N ′ 6= ∅). Then the sequence {

(
µk(·), λk(·)

)
}

generated by Algorithm 2 converges to a solution
(
µ∗(·), λ∗(·)

)
(if exists at all)

of problem (22). Moreover, if g(x(·), ξ) is convex piecewise quadratic and C̄
and S are convex polyhedra, then this sequence converges at q-linear rate with
respect to the norm

‖
(
µk(·)− µ∗(·), λk(·)− λ∗(·)

)
‖r.

Note that the structure of the enlarged nonanticipativity space includes
a hyperplane of u, therefore inducing a new dual vector w. It also require
a different update rule for w. However, in the same spirit of the proof in
Rockafellar and Sun (2019) we can show that Algorithm 2 is a variety of
the proximal point algorithm (Rockafellar, 1976) applied to a partial inverse
problem of Spingarn (1983). Hence we can establish the stated convergence
results for the different nonanticipativity constraint. For brevity, we omit the
proof.

4 Numerical results

All numerical codes are written in MATLAB R2015b and run on a laptop
computer with an Intel(R) Core(TM) i7-7500U 2.90 GHz CPU and 16 GB of
RAM under WINDOWS 10 operating system.
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4.1 An airline seat allocation problem

We tested a CVaR regret minimization model that arises in an airline seat
allocation problem, which is a classical example of real-world applications of
the two-stage stochastic optimization problem. It first appeared in a technical
report of London Business School (DeMiguel and Mishra, 2006) and was sub-
sequently used as a subproblem in papers on airline revenue management such
as Chen and Homem-de-Mello (2010). For simplicity, consider a single flight
with a capacity of 5 units of seats (say, 1 unit = 70 seats) and demand for three
fare classes (business, premier, and economy) with associated revenues rB =
130; rP = 100; rE = 50. Assume demand arrives in two different stages. In the
first stage, there is a deterministic demand of maximal 4 units for economy
class seats, and no demand for business or premier class seats. In the second
stage, demand of business and premier classes comes in random. The manager
is required to allocate the number of seats for each class in each stage to max-
imize the expected total revenue. Apparently, the dimension of the decision
variable is fixed as [1,2], which means that the dimensions of the decision vari-
ables in the first and second stage are 1 and 2, respectively, and in this group of
experiments, to increase the number of scenarios, we generate the demand for
business and premier class seats in the second stage as two random numbers
from the discretized normal distribution with mean parameter and standard
deviation parameter being µB = 0.9, σB = 0.1 and µP = 2.3, σP = 0.2, respec-
tively. The corresponding probability for each scenario is 1/K, where K is the
number of scenarios. For each setting, 10 independent problems are generated.
Then, PHA is applied to solve them with α = 0.5.

For comparison purpose, we also solved the risk-neutral case, which was the
original formulation of expectation measure in DeMiguel and Mishra (2006).

Specifically, the expectation minimization results in the following two-stage
stochastic optimization problem:

min
z(·)

E[cT z(ξ)]

s.t. Az(ξ) ≤ 5, 0 ≤ z(ξ) ≤ D(ξ), ∀ ξ,
z(·) ∈ N := {z(·) : x(ξ) ≡ Constant ∀ξ},

where z(ξ) = (x(ξ), b(ξ), p(ξ))T , c = (−50,−130,−100)T , A = (1, 1, 1) and
D(ξ) = (4, DB , DP )T (“T” stands for the transpose).

Let z′(·) = (y(·), z(·), s(·)) = (y(·), x(·), b(·), p(·), s(·)) and

M =

(
0 1 1 1 0
−1 −50 −130 −100 −1

)
, d =

(
5
0

)
.

The corresponding CVaR minimization problem is

min
z′(·)

E
(
y(ξ) + (1− α)−1s(ξ)

)
s.t. Mz′(ξ) ≤ d, 0 ≤ z(ξ) ≤ D(ξ), ∀ξ,

s(ξ) ≥ cT z(ξ)− y(ξ), s(ξ) ≥ 0, ∀ξ,
z′(·) ∈ N̄ := {z′(·) : x(ξ), y(ξ) ≡ Constants ∀ξ}.
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Figure 1 and Table 1 show the performance of PHA for expectation mini-
mization and CVaR minimization with α = 0.5, when the number of scenarios
increases. In Table 1, “sn” represents the number of scenarios, “iter” means the
average iteration number to convergence for the 10 test problems, “time(s)”
means the average convergence time in seconds for the 10 problems, and “fval”
means their average optimal value.
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Figure 1 Convergence results when sn increases

Table 1 Numerical results while sn increases

sn
Expectation CVaR (α = 0.5)

iter time(s) fval iter time(s) fval
4 19 1.7 -433.347 29 2.2 -426.344
16 32 9.3 -431.661 39 11.3 -424.622
36 37 25.0 -429.710 42 27.7 -422.977
64 38 45.5 -430.192 49 60.6 -423.500
100 39 81.0 -430.389 45 98.7 -423.664

It can be seen from Figure 1 and Table 1 that the number of iterations
grows slowly and time to convergence grows at linear rate for CVaR min-
imization when the number of scenarios increases. It takes more iterations
and hence more time to convergence for CVaR minimization than expectation
minimization. Since CVaR is risk-averse, the cost of it is higher.

4.2 Numerical results for general two-stage linear risk/regret minimization

In order to test the efficiency of PHA for regret minimization, we test a series
of randomly generated two-stage linear risk minimization problems

min
x(·)≥0

R
(
f(x(ξ), ξ)

)
, (24)

where f(x(ξ), ξ) is the optimal value function

f(x(ξ), ξ) := min
x(·)≥0

{
qTx1(ξ) + c(ξ)Tx2(ξ) : A(ξ)x1(ξ) +B(ξ)x2(ξ) = d(ξ)

}
.
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The corresponding regret minimization problem is

min
x(·),y∈R

y + V
(
qTx1(ξ) + c(ξ)Tx2(ξ)− y

)
s.t. A(ξ)x1(ξ) +B(ξ)x2(ξ) = d(ξ), ∀ξ ∈ Ξ, (25)

x1(ξ) ≥ 0, x2(ξ) ≥ 0, ∀ξ ∈ Ξ,
x(·) ∈ N := {x(·) =

(
x1(·), x2(·)

)
: x1(ξ) ≡ Constant ∀ξ}.

The number of scenarios is fixed at 20 and the dimension of the deci-
sion variable x rises from [10,10] to [50,50] in the two stages, with randomly
generated A(ξ), B(ξ), c(ξ) and d(ξ). For each setting, we generate 10 random
problems and use PHA to solve the expectation minimization problems (i.e.
R = E in (24)) and the CVaR minimization problems (25) with α = 0.5,
respectively.
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Figure 2 Convergence results when dimension increases

Table 2 Numerical results while dim increases (sn=20)

dim
Expectation CVaR (α = 0.5)

iter time(s) fval iter time(s) fval
[10, 10] 36 24.4 2.52 245 157.2 3.38
[20, 20] 38 45.1 4.99 215 244.0 6.25
[30, 30] 38 78.3 7.49 252 440.4 8.86
[50, 50] 34 128.0 12.49 253 880.3 14.26

Figure 2 and Table 2 show the performance of PHA for expectation min-
imization and that of the modified PHA for CVaR minimization. From Fig-
ure 2, it is easy to see that the number of iterations to convergence grows
steadily when the dimension of problems increases, while convergence time
grows at faster rate for both expectation minimization and CVaR minimiza-
tion (α = 0.5). In addition, it seems that it takes more iterations and time for
CVaR minimization to converge than the expectation minimization.



20 Jie Sun et al.

5 Conclusion

A dual relationship between risk measures and regret measures is established.
It helps to build a list of correspondences between useful coherent and averse
risk and regret measures. Based on such dual representation of risk measure,
the multistage risk minimization problem can be converted to a multistage
regret minimization problem. A progressive hedging algorithm is proposed for
solving the corresponding minimization problems. In case that linkage con-
straints arise in the risk and regret minimization problems, the progressive
hedging algorithm can be modified to take advantage of the hidden decompos-
ability of the problems. Preliminary numerical results are reported to show the
efficiency of the progressive hedging algorithms for risk-neutral and risk-averse
practical or randomly generated problems.
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