5,308 research outputs found
Midline Shift is Unrelated to Subjective Pupillary Reactivity Assessment on Admission in Moderate and Severe Traumatic Brain Injury.
BACKGROUND: This study aims to determine the relationship between pupillary reactivity, midline shift and basal cistern effacement on brain computed tomography (CT) in moderate-to-severe traumatic brain injury (TBI). All are important diagnostic and prognostic measures, but their relationship is unclear. METHODS: A total of 204 patients with moderate-to-severe TBI, documented pupillary reactivity, and archived neuroimaging were included. Extent of midline shift and basal cistern effacement were extracted from admission brain CT. Mean midline shift was calculated for each ordinal category of pupillary reactivity and basal cistern effacement. Sequential Chi-square analysis was used to calculate a threshold midline shift for pupillary abnormalities and basal cistern effacement. Univariable and multiple logistic regression analyses were performed. RESULTS: Pupils were bilaterally reactive in 163 patients, unilaterally reactive in 24, and bilaterally unreactive in 17, with mean midline shift (mm) of 1.96, 3.75, and 2.56, respectively (p = 0.14). Basal cisterns were normal in 118 patients, compressed in 45, and absent in 41, with mean midline shift (mm) of 0.64, 2.97, and 5.93, respectively (p < 0.001). Sequential Chi-square analysis identified a threshold for abnormal pupils at a midline shift of 7-7.25 mm (p = 0.032), compressed basal cisterns at 2 mm (p < 0.001), and completely effaced basal cisterns at 7.5 mm (p < 0.001). Logistic regression revealed no association between midline shift and pupillary reactivity. With effaced basal cisterns, the odds ratio for normal pupils was 0.22 (95% CI 0.08-0.56; p = 0.0016) and for at least one unreactive pupil was 0.061 (95% CI 0.012-0.24; p < 0.001). Basal cistern effacement strongly predicted midline shift (OR 1.27; 95% CI 1.17-1.40; p < 0.001). CONCLUSIONS: Basal cistern effacement alone is associated with pupillary reactivity and is closely associated with midline shift. It may represent a uniquely useful neuroimaging marker to guide intervention in traumatic brain injury
Prognostic value of early magnetic resonance imaging in dogs after traumatic brain injury: 50 cases
Retrospective study of dogs with TBI that underwent 1.5T MRI within 14 days after head trauma. MRI evaluators were blinded to the clinical presentation, and all images were scored based on an MRI grading system (Grade I [normal brain parenchyma] to Grade VI [bilateral lesions affecting the brainstem with or without any lesions of lesser grade]). Skull fractures, percentage of intraparenchymal lesions, degree of midline shift, and type of brain herniation were evaluated. MGCS was assessed at presentation. The presence of seizures was recorded. Outcome was assessed at 48 h (alive or dead) and at 3, 6, 12, and 24 months after TBI
Prognostic factors for 1-week survival in dogs diagnosed with meningoencephalitis of unknown aetiology
Predictors for cerebral edema in acute ischemic stroke treated with intravenous thrombolysis
Cerebral edema (CED) is a severe complication of acute ischemic stroke. There is uncertainty regarding the predictors for the development of CED after cerebral infarction. We aimed to determine which baseline clinical and radiological parameters predict development of CED in patients treated with intravenous thrombolysis. We used an image-based classification of CED with 3 degrees of severity (less severe CED 1 and most severe CED 3) on postintravenous thrombolysis imaging scans. We extracted data from 42 187 patients recorded in the SITS International Register (Safe Implementation of Treatments in Stroke) during 2002 to 2011. We did univariate comparisons of baseline data between patients with or without CED. We used backward logistic regression to select a set of predictors for each CED severity. CED was detected in 9579/42 187 patients (22.7%: 12.5% CED 1, 4.9% CED 2, 5.3% CED 3). In patients with CED versus no CED, the baseline National Institutes of Health Stroke Scale score was higher (17 versus 10; P<0.001), signs of acute infarct was more common (27.9% versus 19.2%; P<0.001), hyperdense artery sign was more common (37.6% versus 14.6%; P<0.001), and blood glucose was higher (6.8 versus 6.4 mmol/L; P<0.001). Baseline National Institutes of Health Stroke Scale, hyperdense artery sign, blood glucose, impaired consciousness, and signs of acute infarct on imaging were independent predictors for all edema types. The most important baseline predictors for early CED are National Institutes of Health Stroke Scale, hyperdense artery sign, higher blood glucose, decreased level of consciousness, and signs of infarct at baseline. The findings can be used to improve selection and monitoring of patients for drug or surgical treatment
Condylar Hyperplasia: An Updated Review of the Literature
Condylar hyperplasia (CH) is a rare disorder characterized by excessive bone growth that almost always presents unilaterally, resulting in facial asymmetry. Classification of the different types of CH can differ depending on the authors. Correct diagnosis is critical in determining the proper treatments and timing. This paper is a review of the recent literature on the epidemiology, etiology, diagnosis, classification, and surgical treatments of CH
Routine repeat head CT may not be necessary for patients with mild TBI.
Background:Routine repeat cranial CT (RHCT) is standard of care for CT-verified traumatic brain injury (TBI). Despite mixed evidence, those with mild TBI are subject to radiation and expense from serial CT scans. Thus, we investigated the necessity and utility of RHCT for patients with mild TBI. We hypothesized that repeat head CT in these patients would not alter patient care or outcomes. Methods:We retrospectively studied patients suffering from mild TBI (Glasgow Coma Scale (GCS) score 13-15) and treated at the R Adams Cowley Shock Trauma Center from November 2014 through January 2015. The primary outcome was the need for surgical intervention. Outcomes were compared using paired Student's t-test, and stratified by injury on initial CT, GCS change, demographics, and presenting vital signs (mean ± SD). Results:Eighty-five patients met inclusion criteria with an average initial GCS score=14.6±0.57. Our center sees about 2800 patients with TBI per year, or about 230 per month. This includes patients with concussions. This sample represents about 30% of patients with TBI seen during the study period. Ten patients required operation (four based on initial CT and others for worsening GCS, headaches, large unresolving injury). There was progression of injury on repeat CT scan in only two patients that required operation, and this accompanied clinical deterioration. The mean brain Abbreviated Injury Scale (AIS) score was 4.8±0.3 for surgical patients on initial CT scan compared with 3.4±0.6 (P<0.001) for non-surgical patients. Initial CT subdural hematoma size was 1.1±0.6 cm for surgical patients compared with 0.49±0.3 cm (P=0.05) for non-surgical patients. There was no significant difference between intervention groups in terms of other intracranial injuries, demographics, vital signs, or change in GCS. Overall, 75 patients that did not require surgical intervention received RHCT. At 51 000 was spent on unnecessary imaging ($367 000/year, extrapolated). Discussion:In an environment of increased scrutiny on healthcare expenditures, it is necessary to question dogma and eliminate unnecessary cost. Our data questions the use of routine repeat head CT scans in every patient with anatomic TBI and suggests that clinically stable patients with small injury can simply be followed clinically. Level of evidence:Level III
Emergency decompressive craniectomy after removal of convexity meningiomas
BACKGROUND: Convexity meningiomas are benign brain tumors that are amenable to complete surgical resection and are associated with a low complication rate. The aim of this study was to identify factors that result in acute postoperative neurological worsening after the removal of convexity meningiomas. METHODS: Clinical evaluation and neuroradiological analysis of patients who underwent removal of a supratentorial convexity meningioma were reviewed. Patients were selected when their postoperative course was complicated by acute neurological deterioration requiring decompressive craniectomy. RESULTS: Six patients (mean age: 43.3 years) underwent surgical removal of a supratentorial convexity meningioma. Brain shift (mean: 9.9 mm) was evident on preoperative imaging due to lesions of varying size and perilesional edema. At various times postoperatively, patient consciousness worsened (up to decerebrate posture) with contralateral paresis and pupillary anisocoria. Computed tomography revealed no postoperative hematoma, however, did indicate increased brain edema and ventricular shift (mean: 12 mm). Emergency decompressive craniectomy and brief ventilator assistance were performed in all patients. Ischemia of the ipsilateral posterior cerebral artery occurred in 3 patients and hydrocephalus occurred in 2 patients. Outcome was good in 2, fair in 2, 1 patient had severe disability, and 1 patient died after 8 months. CONCLUSIONS: Brain shift on preoperative imaging is a substantial risk factor for postoperative neurological worsening in young adult patients after the removal of convexity meningiomas. Emergency decompressive craniectomy must be considered because it is effective in most cases. Other than consciousness impairment, there is no reliable clinical landmark to guide the decision to perform decompressive craniectomy; however, brain ischemia may have already occurred
Natural History of Acute Subdural Hematoma
Although guidelines for surgical decision-making in patients with acute subdural hematomas (ASDHs) are widely available, the evidence supporting these guidelines is weak, and management of these patients must often be individualized. Smaller ASDHs in patients in good neurologic condition usually can be successfully managed without surgery. Large ASDHs with minimal mass effect in patients with minimal symptoms also may be considered for nonoperative management. The literature is divided about the effects of anticoagulant and antiplatelet medications on rapid growth of ASDHs and on their likelihood of progression to large chronic subdural hematomas, but it is reasonable to reverse the effects of these medications promptly. Close clinical and radiologic follow-up is needed in these patients, both acutely to detect rapid expansion of an ASDH, and subacutely to detect formation of a large subacute or chronic subdural hematoma
Application of machine learning to automated analysis of cerebral edema in large cohorts of ischemic stroke patients
Cerebral edema contributes to neurological deterioration and death after hemispheric stroke but there remains no effective means of preventing or accurately predicting its occurrence. Big data approaches may provide insights into the biologic variability and genetic contributions to severity and time course of cerebral edema. These methods require quantitative analyses of edema severity across large cohorts of stroke patients. We have proposed that changes in cerebrospinal fluid (CSF) volume over time may represent a sensitive and dynamic marker of edema progression that can be measured from routinely available CT scans. To facilitate and scale up such approaches we have created a machine learning algorithm capable of segmenting and measuring CSF volume from serial CT scans of stroke patients. We now present results of our preliminary processing pipeline that was able to efficiently extract CSF volumetrics from an initial cohort of 155 subjects enrolled in a prospective longitudinal stroke study. We demonstrate a high degree of reproducibility in total cranial volume registration between scans (R = 0.982) as well as a strong correlation of baseline CSF volume and patient age (as a surrogate of brain atrophy, R = 0.725). Reduction in CSF volume from baseline to final CT was correlated with infarct volume (R = 0.715) and degree of midline shift (quadratic model, p < 2.2 × 10−16). We utilized generalized estimating equations (GEE) to model CSF volumes over time (using linear and quadratic terms), adjusting for age. This model demonstrated that CSF volume decreases over time (p < 2.2 × 10−13) and is lower in those with cerebral edema (p = 0.0004). We are now fully automating this pipeline to allow rapid analysis of even larger cohorts of stroke patients from multiple sites using an XNAT (eXtensible Neuroimaging Archive Toolkit) platform. Data on kinetics of edema across thousands of patients will facilitate precision approaches to prediction of malignant edema as well as modeling of variability and further understanding of genetic variants that influence edema severity
- …
