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Cerebral edema contributes to neurological deterioration and death after hemispheric

stroke but there remains no effective means of preventing or accurately predicting its

occurrence. Big data approaches may provide insights into the biologic variability and

genetic contributions to severity and time course of cerebral edema. These methods

require quantitative analyses of edema severity across large cohorts of stroke patients.

We have proposed that changes in cerebrospinal fluid (CSF) volume over time may

represent a sensitive and dynamic marker of edema progression that can be measured

from routinely available CT scans. To facilitate and scale up such approaches we

have created a machine learning algorithm capable of segmenting and measuring

CSF volume from serial CT scans of stroke patients. We now present results of our

preliminary processing pipeline that was able to efficiently extract CSF volumetrics from

an initial cohort of 155 subjects enrolled in a prospective longitudinal stroke study. We

demonstrate a high degree of reproducibility in total cranial volume registration between

scans (R = 0.982) as well as a strong correlation of baseline CSF volume and patient

age (as a surrogate of brain atrophy, R = 0.725). Reduction in CSF volume from baseline

to final CT was correlated with infarct volume (R = 0.715) and degree of midline shift

(quadratic model, p < 2.2 × 10−16). We utilized generalized estimating equations (GEE)

to model CSF volumes over time (using linear and quadratic terms), adjusting for age.

This model demonstrated that CSF volume decreases over time (p < 2.2 × 10−13) and

is lower in those with cerebral edema (p = 0.0004). We are now fully automating this

pipeline to allow rapid analysis of even larger cohorts of stroke patients from multiple

sites using an XNAT (eXtensible Neuroimaging Archive Toolkit) platform. Data on kinetics

of edema across thousands of patients will facilitate precision approaches to prediction

of malignant edema as well as modeling of variability and further understanding of genetic

variants that influence edema severity.

Keywords: ischemic stroke, machine learning, cerebral edema, image analysis and processing, CT scan, CSF

volume, GEE
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INTRODUCTION

Over 10 million persons suffer a stroke each year worldwide
(1). Most of these patients have at least one brain imaging
study performed during their acute hospitalization, primarily for
diagnostic purposes on presentation (2). Follow-up scans are
often obtained to evaluate the size of infarction, degree of cerebral
edema, as well as exclude the development of hemorrhagic
transformation (3). Computed tomography (CT) is the most
frequently employed modality for acute stroke imaging due to its
widespread availability, lower cost, and greater speed of scanning,
especially important in acutely unstable patients where “time is
brain” (4). Although conventional CT does not have the ability
of magnetic resonance imaging (MRI) to detect hyper-acute
stroke, its ability to track progression of infarction and edema
after stroke are comparable while affording greater temporal
resolution with serial imaging (5). This practice means that
there is a massive global imaging dataset of stroke patients
with information on stroke location, infarct size, development of
edema, and hemorrhagic transformation.While these parameters
can be assessed by human raters, such evaluation is not
scalable when leveraging imaging data from thousands of
patients.

Cerebral edema develops around regions of brain infarction
within the first week after stroke. This pathologic increase in
brain water and hemispheric volume can lead to mass effect
and is the major cause of death and neurological worsening
after stroke (6). Development of edema is usually heralded by
abrupt mental status worsening 2 days or more after admission,
when herniation and midline shift have already developed (7).
However, this process actually begins in the first hours after
stroke and evolves continually and progressively over the first few
days. At first decreases in blood and cerebrospinal fluid (CSF)
compartments within the cranial compartment compensate for
this increase in brain volume. However, once this has been
exhausted, decompensation with worsening rapidly follows.
Current measures of edema such as midline shift (MLS) or
neurological deterioration capture only this decompensated state
and not the critical early stages of edema before worsening.
Further, assessing edema utilizing only MLS neglects the full
spectrum of edema, including those with increased brain volume
who never develop MLS. Measures of lesion volume either
requires MRI (not feasible in all stroke patients) or can be
estimated using CT; however, hypodensity on CT may be subtle
early on and represents a variable combination of infarct plus
edema. It is only the latter component that contributes to swelling
and risk of herniation, and so lesion volume (even on MRI) only
partially predicts risk of herniation (8).

We have proposed a sensitive quantitative metric of edema
severity that can be extracted from CT imaging at variable time
points after stroke (9). This leverages the reciprocal biologic

relationship between increase in brain volume due to swelling

and proportional decrease in CSF volume as compensation. CSF
is pushed out of hemispheric sulci, cerebral ventricles, and the
basal cisterns as edema develops in the hours and days after
stroke. The reduction in CSF volume precedes the development
of midline shift and clinical worsening due to edema. We

demonstrated that the volume of CSF displaced up to the time
of maximal edema closely correlated with extent of midline shift.

We have also developed an automated algorithm to segment
CSF from CT scans of stroke patients (10). This critical step
employed random forest-based machine learning (ML) trained
on manually delineated scans. Features integrated into the ML
platform include Haar-like patterns of pixels. This supervised
learning approach was able to rapidly and reliably measure CSF
volume on serial CT scans from two sites in our preliminary
testing, performing significantly better than simple threshold-
based models for CSF segmentation which were confounded by
density of infarction mimicking CSF. Correlations of automated
CSF volumes to ground-truth values exceeded 0.95, with volumes
that closely approximated actual CSF values after active contour
refinement. This automated approach facilitates the translation
of this metric to studies evaluating edema in large numbers of
stroke patients. Exploring the variability in quantifiable edema
severity between patients will not only unlock opportunities for
precise prediction of malignant edema at earlier time points but
also provide the basis for understanding the genetic basis of
cerebral edema. Such studies require thousands of stroke patients
with serial imaging to undergo CSF-based edema measurement.
We now present a proof-of-principle application of a processing
algorithm capable of handling large datasets of CT scans and
extracting CSF volumes for such analyses.

MATERIALS AND METHODS

Subjects and Data Collection
Patients with a diagnosis of ischemic stroke who were admitted
to Barnes-Jewish Hospital were screened for enrollment into
the Genetics of Neurological Instability after Ischemic Stroke
(GENISIS) study if they presented within 6 h of symptom
onset. Subjects provided informed consent for data collection,
including acute stroke imaging. Clinical data collected included
age and NIHSS at baseline. All head CT imaging performed on
subjects enrolled between 2009 and 2014 was then extracted from
the clinical radiology server. We included only those with at
least one follow-up scan performed during their hospitalization.
Figure 1 shows the steps involved in a processing pipeline
capable of uploading, evaluating, processing, and extracting CSF
volumes from these scans. All scans (including baseline CT on
presentation and each follow-up scan available) were uploaded
from the hospital’s Picture Archiving and Communication
System (PACS) server to Central Neuroimaging Data Archive
(CNDA), where they were stored in Digital Imaging and
Communications in Medicine (DICOM) format (11). All studies
were de-identified during the upload process using a standard
algorithm integrated into the upload pipeline. FU scans were
reviewed for presence of visible infarct as well as graded for
degree of cerebral edema (CED grade 0, no infarct visible; 1, focal
swelling up to 1/3 of cerebral hemisphere; 2, focal swelling of
>1/3 of cerebral hemisphere; 3, swelling with midline shift) (12).

DICOM Conversion
DICOM images were converted to NIfTI (Neuroimaging
Informatics Technology Initiative) format in bulk using the
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FIGURE 1 | Outline of image processing pipeline to analyze CSF volumes from

large cohorts of stroke patients.

dcm2niix software. Multiple DICOM-encoded brain slices from
a single scanner sequence were compiled into a single 3-
dimensional NIfTI file. The header of the newly created NIfTI
file also stores the image dimensions (e.g.,∼512× 512× 32) and
pixel dimensions (e.g., ∼0.42 × 0.42 × 5-mm). The conversion
also labels the resulting file using the subject identifier (assigned
during upload) plus date and time of each scan (extracted from

the DICOM metadata). Due to inconsistency in storing slice
thickness in CT metadata, conversion extracts pixel height not
from slice thickness and/or spacing between slices (reported
inconsistently in metadata) but by calculating the actual distance
between two consecutive slices. Conversion of CT images poses
additional unique complexities: images are often acquired with
slice axis oblique to the scanning table (13). This gantry tilt
would result in a skewed 3D stack of images if this is not
resolved using trigonometry and resampling (as is performed
during conversion). This resampling to a consistent plane is also
important for accurate co-registration of scans within a given
patient. Some CT series may also be acquired with varying slice
thicknesses, typically with thinner slices in the posterior fossa.
Such inconsistency cannot be handled by theNIfTI format, which
requires uniform slice thickness when storing imaging data.
The conversion algorithm recognizes such variable inter-slice
distances and interpolates to a uniform thickness in the resulting
NIfTI file. We also store additional metadata not captured in the
NIfTI header (such as scanner, protocol, method of conversion)
in a brain imaging data structure (BIDS) accessory file (14).

Image Selection
Each patient often has multiple series performed as part of
a single session. Derived images were excluded automatically
from conversion using the “–i y” switch in dcm2niix. However,
selection of axial brain images required some manual review of
converted NIfTI files to exclude bone windows and additional
series that were not analyzed (e.g., angiographic images).

Infarct Review
Each follow-up scan was also manually reviewed for presence
and location of visible infarcts as well as presence and degree
of midline shift (at level of the septum pellucidum). Visible
stroke-related hypodensities were outlined in MRICro and saved
as image masks. Infarct location was categorized as cortical,
subcortical, both cortical and subcortical, lacunar (subcortical
with diameter <15mm), or other.

Brain Extraction and Perimeter
Registration
Further anonymization of images was ensured by removal of
all structures external to the cranial cavity (i.e., skull stripping).
This was accomplished by k-means clustering of pixel intensities
to segregate brain, skull, and all external pixels. Skull and
external regions were then excluded to yield a mask of just the
intracranial contents. This image was then registered to a brain
template that consisted of 15 brain images of stroke patients
with manually outlined cranial perimeter to include all supra-
tentorial structures as well as basal cisterns, but specifically
excluding portions of the posterior fossa (e.g., cerebellum) on
the same slices. Each subjects baseline brain scan was registered
to each of these atlas brains using the Advanced Normalized
Toolkit (ANTS) and pixels were included if they matched to the
atlas masks in over half of the template scans. This registered
baseline scan was then registered to each follow-up scan and
non-matching brain regions were excluded.
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CSF Segmentation
The brain mask was then segmented using the CSF classifier
that we previously trained using random forest machine learning
(10). This segmentation was then refined using an active contour
method and cleaned using a manually drawn mask of the
infarct hypodensity (if present on follow-up scans). Results
are summarized in JPEG snapshots of the resulting CSF mask
overlaid onto the CT images for manual review of segmentation
accuracy on serial scans (see Figure 2 for results of CSF
segmentation in one representative subject).

Volumetric Analyses
The number of pixels in each compartment (intracranial
compartment, CSF, infarct) is extracted from each image mask.
This is then converted into volume using the pixel dimensions in
the image header. Results from each scan are compiled into an
exportable data file. This was analyzed in R (R: a language and
environment for statistical computing). CSF and infarct volumes
were analyzed in milliliters (ml) as well as a proportion of total
cranial volume (%). The maximum change in CSF volume was
calculated using the lowest measured volume as a percentage of
the baseline volume.

Dynamic CSF Volumetric Modeling
Generalized estimating equation (GEE) was used to model the
temporal CSF volume changes using the multiple CT scans from
this patient cohort. In this study, due to an irregular time interval
between the scans from different subjects, we employed aMarkov
working correlation structure, corr(yi,j, yi,k) = a|ti,j−ti,k|, where
yi,j and yi,k are CSF volumes of patient i at tij and tik. Besides
its capability to model irregular time interval between the scans,
this working correlation structure also takes the assumption that

the correlation between the measurements from the same subject
weakens with an increased time interval (0 < a < 1) (15). In this
study, the model we employed for statistical inference include
age, time from stroke onset (T), and a dichotomized cerebral
edema grade (CED grade 3 vs. grade 0, 1, 2), which is given
as E

(

yi,j
)

= b0 + b1∗ti,j + b2∗ti,j ∗ti,j + b3∗agei + b4∗cedi.
These coefficient (b0∼b4 and a) are calculated through a two
stage solutions. P-values were computed with a robust covariance
structure.

RESULTS

The cohort included 155 subjects, whose demographics are
shown in Table 1. Registration failed in two subjects, who were
excluded from segmentation and analysis. This left a total of
397 scans analyzed for cranial cavity and CSF volumes. Median
time from stroke onset to first scan was just over 1 h (IQR 0.8–
2.4 h) while time from baseline to first follow-up scan was a
median of 21 h (IQR 6–42 h); 55 subjects had three or more scans
performed serially after stroke. One hundred (66%) had one or
more scans performed at least 24 h after stroke onset. In one case
the only FU scan was over 1 week after stroke; this subject was
excluded. The majority of infarcts were cortical or both cortical
and subcortical. In those with at least 24-h follow-up, median
volume of visible infarct-related hypodensity was 73ml (IQR 5–
203). Median volume was 22ml for subcortical infarcts, 49.6ml
for cortical infarcts, and 219ml for infarcts affecting both cortical
and subcortical regions.

Swelling with midline shift (i.e., CED grade 3) was
demonstrated in 32 (32%) of those with scans beyond 24 h.
Median MLS was 6.5mm in this subgroup (IQR 4.0–9.5)
compared to 0 in other CED grades. Registration was able

FIGURE 2 | Axial brain slices from head CT (top) and results of CSF segmentation from a 82-year old woman with initial NIHSS of 18. Baseline CT (A) was performed

within 1 h of stroke onset (CSF volume 224ml). First follow-up CT (B) was performed at 20-h (CSF volume 150ml) and second follow-up CT (C) at 110-h (CSF volume

105ml).
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to extract a consistent cranial mask across serial scans; we
demonstrated a strong correlation between baseline and FU
cranial volumes (r = 0.98, p < 2 × 10−16; Figure 3). There was
also a good correlation between baseline CSF volume (as percent
of cranial volume) and age of patient (r = 0.74, p < 2 × 10−16;
Figure 4).

The maximal reduction in CSF volume (as percentage of
baseline) was associated with degree of midline shift developing
(Figure 5). In fact, there appeared to be a non-linear (quadratic)
relationship, whereby minimal midline shift developed despite
a mild-moderate CSF volume loss. Beyond the point at which
30–40% of the total baseline CSF had been lost, it appears that

TABLE 1 | Cohort of 155 stroke subjects with baseline and follow-up CT scans.

Variable

Age 67 ± 14 years

Gender, male 82 (53%)

NIHSS 11 (IQR 6–16)

Time from stroke onset to first CT 1.25 h (IQR 0.8–2.4)

Number with 2/3/4/5 serial scans 153/55/24/14

Infarct location:

Cortical only 24

Subcortical only 8

Both cortical and subcortical 42

Lacune 7

No infarct seen 12

Unable to assess (no scan beyond 24 h) 56

CED grade* 0/1/2/3 17/34/16/32

*In those with imaging at least at 24 h or beyond.

midline shift rapidly develops. Peak CSF volume loss was also
correlated with infarct volume in a linear fashion (Figure 6) and
was significantly greater in those stroke patients with infarcts
affecting both cortical and subcortical structures and minimal in
those with lacunar infarcts (Figure 7).

In the GEE model, we found that CSF volume was
independently affected by all three variables: age, time from
stroke onset and CED grade. CSF volume increases with age (b1
= 3.01 cc/year, p< 10−16) and is lower in those with CED grade 3
(b3 =−32.57 cc, p= 4× 10−4). CSF volume also decreased over
time (−22 cc/day, p = 2 × 10−13) but there was also a second-
order quadratic time factor significant in CSF evolution (p= 6×
10−10). The evolution of CSF volume over time in CED grades is
shown in Figure 8.

DISCUSSION

Here we present the initial results of a machine learning-
based pipeline to analyze large numbers of serial CT brain
images in order to quantify the progression of cerebral edema
after ischemic stroke. We applied our random forest-based
segmentation algorithm within a broader image processing
pipeline to measure CSF volumes in almost 400 CT scans, with
failure of scan registration in only two of over 150 subjects with a
variety of stroke locations and volumes. We are now working to
refine our registration parameters to deal with these rare failures,
including addition of shrink factors, smoothing parameters, and
affine registration (16). In the remainder cranial registration was
robust, with tight correlation of volumes between baseline and
repeat images.We also demonstrated a clear relationship between
proportion of the cranium comprising CSF (as a surrogate for
brain atrophy) and patient age (17).

FIGURE 3 | Strong agreement of registered cranial volumes on baseline and follow-up scans.
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FIGURE 4 | Subject’s age correlates with proportion of cranial cavity comprised by CSF on baseline head CT (gray zone represents 95% confidence interval for

predictions from the linear regression model).

FIGURE 5 | Relationship between maximal reduction in CSF volume (relative to baseline) and peak degree of midline shift (gray zone represents 95% confidence

interval for predictions from the quadratic regression model).

More importantly, we further demonstrated that our metric
of CSF volume reduction is a strong marker not only of stroke
volume but of the eventual development of midline shift. There
was more CSF volume loss in those with larger infarcts affecting
both cortical and subcortical structures. However, it appears that
midline shift only develops once some degree of compensation

afforded by CSF loss has been exhausted. Beyond this threshold,
midline shift rapidly develops, as illustrated by our quadratic
modeling.

Furthermore, we used longitudinal GEE modeling to
demonstrate that CSF volume generally decreased over time
after stroke. Even adjusting for age and time from baseline

Frontiers in Neurology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 687

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dhar et al. Automated Analysis of Cerebral Edema

FIGURE 6 | Relationship between infarct volume (based on largest hypodensity measured from available head CT scans) and maximal reduction in CSF volume.

FIGURE 7 | Maximal reduction in CSF volume (as percentage of baseline) in relation to infarct location.

CT, we confirmed that those with significant CED had greater
reductions in CSF volume than those without CED. CSF
volumes do not change appreciably over time in those with
small infarcts (Figure 8) with while those with larger infarcts
(CED grades 2 and 3) appear to exhibit gradual but progressive
reductions in CSF volumes of between 25 and 50% relative

to baseline. Furthermore, those with CED grade 3 (who,
by definition, ultimately develop MLS) seem to manifest a
continued downward trajectory between 24 and 48 h after stroke.
This group appears to reach an asymptote of maximal CSF
reduction of about half baseline volume by 48 h. This volume
reduction would represent approximately one hemisphere of
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FIGURE 8 | CSF volume (as percentage of volume on baseline CT) over time in groups with CED grades 0–1, 2, and 3.

CSF, appropriate to a process that is likely to produce edema
predominantly involving the ipsilateral hemisphere. As our
analysis relating MLS with CSF volume loss suggests, there is
potential for greater decompensation (with development of
MLS) once this proportion of CSF volume has been exhausted.
As we accumulate more volumetric data across more stroke
patients, we plan to perform more sophisticated analyses that
evaluate the interaction of edema severity with rate of CSF
volume reduction, incorporating and modeling the effect of
further covariates such as NIHSS.

This study provides proof-of-principle that we can
automate brain imaging data analysis and obtain meaningful
volumetric data on large cohorts of stroke patients. Such
an approach, leveraging routinely obtained clinical imaging
data or imaging obtained in clinical trials to advance the
science of stroke is the pathway to realizing the potential
of big data in brain imaging (18). One notable challenge
of sharing brain imaging data is ensuring anonymization.
In our pipeline this is accomplished by both robust de-
identification of DICOM metadata prior to scan transmission
to our centralized repository as well as skull stripping during
brain extraction and registration. This latter process has
also been accomplished previously using similar methods
(19).

While this study demonstrates the feasibility of an imaging
pipeline to deal with large volumes of CT data, there are a number
of refinements required before it can manage big imaging
data from large multi-site repositories. In this preliminary
test application, we only utilized data from a single site with
existing upload capabilities from PACS to our analysis server.

In future we will leverage the existing resources of CNDA to
import and archive scans from multiple sites. This imposes
other challenges to imaging harmonization as scans are obtained
with various protocols under varying sequence names and
even in disparate languages. We are currently developing a
convolutional neural network (CNN) approach to intelligently
but automatically select the appropriate scan from a number
of CT series performed concurrently. Subsequent steps in
processing such as brain registration and segmentation also
need to be automated and we are working on a Docker
container-based approach to integrating processing modules
(20). We are also working to provide internal quality control
checks and means of project-level data visualization to further
refine the processing. A further challenge to full automation
is the need for manual delineation of infarct hypodensity.
We are now developing a CNN-based method of segmenting
stroke lesions from serial CT scans (21). Such refinements
will be key to successfully scaling up these processes to
thousands of CT scans and realizing the potential of big data
in stroke. With respects to cerebral edema, this will allow
us to precisely predict the course of individual patients from
early CSF changes while simultaneously utilizing this imaging-
based endophenotype (rate of edema formation) as the basis for
powerful genetic studies to develop new targeted therapies to
prevent edema.
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