7,811 research outputs found

    A method for volume stabilization of single, dye-doped water microdroplets with femtoliter resolution

    Full text link
    A self-control mechanism that stabilizes the size of Rhodamine B-doped water microdroplets standing on a superhydrophobic surface is demonstrated. The mechanism relies on the interplay between the condensation rate that was kept constant and evaporation rate induced by laser excitation which critically depends on the size of the microdroplets. The radii of individual water microdroplets (>5 um) stayed within a few nanometers during long time periods (up to 455 seconds). By blocking the laser excitation for 500 msec, the stable volume of individual microdroplets was shown to change stepwise.Comment: to appear in the J. Op. Soc. Am.

    Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface

    Full text link
    We report laser emission from single, stationary, Rhodamine B-doped glycerol/water microdroplets located on a superhydrophobic surface. In the experiments, a pulsed, frequency-doubled Nd:YAG laser operating at 532 nm was used as the excitation source. The microdroplets ranged in diameter from a few to 20 um. Lasing was achieved in the red-shifted portion of the dye emission spectrum with threshold fluences as low as 750 J/cm2. Photobleaching was observed when the microdroplets were pumped above threshold. In certain cases, multimode lasing was also observed and attributed to the simultaneous lasing of two modes belonging to different sets of whispering gallery modes.Comment: to appear in Optics Communication

    Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    Full text link
    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, food industry, cosmetics, or spills of liquids. While the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the last two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As model system we pick a sessile Ouzo droplet (as known from daily life - a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent, while the more volatile ethanol is evaporating, preferentially at the rim of the drop due to the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color which typifies the so-called 'Ouzo-effect'. Once all ethanol has evaporated, the drop, which now has a characteristic non-spherical-cap shape, has become clear again, with a water drop sitting on an oil-ring (phase III), finalizing the phase inversion. Finally, in phase IV, also all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.Comment: 40 pages, 12 figure

    How Phenol and α-Tocopherol React with Ambient Ozone at Gas/Liquid Interfaces

    Get PDF
    The exceptional ability of α-tocopherol (α-TOH) for scavenging free radicals is believed to also underlie its protective functions in respiratory epithelia. Phenols, however, can scavenge other reactive species. Herein, we report that α-TOH/α-TO^− reacts with closed-shell O_3(g) on the surface of inert solvent microdroplets in <1 ms to produce persistent α-TO−O_n^−(n = 1−4) adducts detectable by online thermospray ionization mass spectrometry. The prototype phenolate PhO^−, in contrast, undergoes electron transfer under identical conditions. These reactions are deemed to occur at the gas/liquid interface because their rates: (1) depend on pH, (2) are several orders of magnitude faster than within microdroplets saturated with O_3(g). They also fail to incorporate solvent into the products: the same α-TO−On^− species are formed on acetonitrile or nucleophilic methanol microdroplets. α-TO−O_n(=1−3)^− signals initially evolve with [O_3(g)] as expected from first-generation species, but α-TO−O^− reacts further with O_3(g) and undergoes collisionally induced dissociation into a C_(19)H_(40) fragment (vs C_(19)H_(38) from α-TO^−) carrying the phytyl side chain, whereas the higher α-TO−O_(n≥2)^− homologues are unreactive toward O_3(g) and split CO_2 instead. On this basis, α-TO−O^− is assigned to a chroman-6-ol (4a, 8a)-ene oxide, α-TO−O2^− to an endoperoxide, and α-TO−O3^− to a secondary ozonide. The atmospheric degradation of the substituted phenols detected in combustion emissions is therefore expected to produce related oxidants on the aerosol particles present in the air we breathe

    Evaporation-triggered segregation of sessile binary droplets

    Get PDF
    Droplet evaporation of multicomponent droplets is essential for various physiochemical applications, e.g. in inkjet printing, spray cooling and microfabrication. In this work, we observe and study phase segregation of an evaporating sessile binary droplet, consisting of a mixture of water and a surfactant-like liquid (1,2-hexanediol). The phase segregation (i.e., demixing) leads to a reduced water evaporation rate of the droplet and eventually the evaporation process ceases due to shielding of the water by the non-volatile 1,2-hexanediol. Visualizations of the flow field by particle image velocimetry and numerical simulations reveal that the timescale of water evaporation at the droplet rim is faster than that of the Marangoni flow, which originates from the surface tension difference between water and 1,2-hexanediol, eventually leading to segregation

    Absorption of Inhaled NO_2

    Get PDF
    Nitrogen dioxide (NO_2), a sparingly water-soluble π-radical gas, is a criteria air pollutant that induces adverse health effects. How is inhaled NO_2(g) incorporated into the fluid microfilms lining respiratory airways remains an open issue because its exceedingly small uptake coefficient (γ 10^(−7)−10^(−8)) limits physical dissolution on neat water. Here, we investigate whether the biological antioxidants present in these fluids enhance NO_2(g) dissolution by monitoring the surface of aqueous ascorbate, urate, and glutathione microdroplets exposed to NO_2(g) for 1 ms via online thermospray ionization mass spectrometry. We found that antioxidants catalyze the hydrolytic disproportionation of NO_2(g), 2NO_2(g) + H_2O(l) = NO_3^−(aq) + H^+(aq) + HONO, but are not consumed in the process. Because this function will be largely performed by chloride, the major anion in airway lining fluids, we infer that inhaled NO_2(g) delivers H^+, HONO, and NO_3^− as primary transducers of toxic action without antioxidant participation

    The influence of oxidative-thermal degradation of polypropylene on measured interface strength of glass fibre-polypropylene

    Get PDF
    It was previously found that thermal-oxidative degradation of the polypropylene could significantly affect the measured interfacial strength of glass fibre reinforced polypropylene (GF-PP) micro-composite. In this work, different approaches have been employed to justify this influence. Hot-stage microscopy was used to establish a degradation profile of PP microdroplets that had different initial dimensions and results revealed that the reduction in droplet dimensions was affected by not only its initial droplet size and but also the presence of the fibre in the droplet. The Young's moduli of PP microdroplets with different heat treatments were examined by using nanoindentation technique and the results showed that there was significant stiffness deterioration in degraded samples and the severity is also related to the droplet size for a given heat treatment. Comparison of adhesion for GF-PP was also made between degraded and non-degraded samples. It shows that non-degraded samples give much higher values for interface strength of GF-PP than degraded ones

    Can hail and rain nucleate cloud droplets?

    Full text link
    We present results from moist convection in a mixture of pressurized sulfur hexa-flouride (liquid and vapor) and helium (gas) to model the wet and dry components of the earth's atmosphere. To allow for homogeneous nucleation, we operate the experiment close to critical conditions. We report on the nucleation of microdroplets in the wake of large cold liquid drops falling through the supersaturated atmosphere and show that the homogeneous nucleation is caused by isobaric cooling of the saturated sulfur hexaflouride vapor. Our results carry over to atmospheric clouds: falling hail and cold rain drops may enhance the heterogeneous nucleation of microdroplets in their wake under supersaturated atmospheric conditions. We also observed that under appropriate conditions settling microdroplets form a rather stable horizontal cloud layer, which separates regions of super and sub critical saturation.Comment: 6 pages, 3 figure

    Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface

    Get PDF
    Evaporation of multi-component drops is crucial to various technologies and has numerous potential applications because of its ubiquity in nature. Superamphiphobic surfaces, which are both superhydrophobic and superoleophobic, can give a low wettability not only for water drops but also for oil drops. In this paper, we experimentally, numerically and theoretically investigate the evaporation process of millimetric sessile ouzo drops (a transparent mixture of water, ethanol, and trans-anethole) with low wettability on a superamphiphobic surface. The evaporation-triggered ouzo effect, i.e. the spontaneous emulsification of oil microdroplets below a specific ethanol concentration, preferentially occurs at the apex of the drop due to the evaporation flux distribution and volatility difference between water and ethanol. This observation is also reproduced by numerical simulations. The volume decrease of the ouzo drop is characterized by two distinct slopes. The initial steep slope is dominantly caused by the evaporation of ethanol, followed by the slower evaporation of water. At later stages, thanks to Marangoni forces the oil wraps around the drop and an oil shell forms. We propose an approximate diffusion model for the drying characteristics, which predicts the evaporation of the drops in agreement with experiment and numerical simulation results. This work provides an advanced understanding of the evaporation process of ouzo (multi-component) drops.Comment: 41 pages, 8 figure
    • …
    corecore