197,297 research outputs found
Clusters of microRNAs emerge by new hairpins in existing transcripts
Genetic linkage may result in the expression of multiple products from a polycistronic transcript, under the control of a single promoter. In animals, protein-coding polycistronic transcripts are rare. However, microRNAs are frequently clustered in the genomes of animals, and these clusters are often transcribed as a single unit. The evolution of microRNA clusters has been the subject of much speculation, and a selective advantage of clusters of functionally related microRNAs is often proposed. However, the origin of microRNA clusters has not been so far explored. Here, we study the evolution of microRNA clusters in Drosophila melanogaster. We observed that the majority of microRNA clusters arose by the de novo formation of new microRNA-like hairpins in existing microRNA transcripts. Some clusters also emerged by tandem duplication of a single microRNA. Comparative genomics show that these clusters are unlikely to split or undergo rearrangements. We did not find any instances of clusters appearing by rearrangement of pre-existing microRNA genes. We propose a model for microRNA cluster evolution in which selection over one of the microRNAs in the cluster interferes with the evolution of the other linked microRNAs. Our analysis suggests that the study of microRNAs and small RNAs must consider linkage associations
Downregulation of plasma MiR-142-3p and MiR-26a-5p in patients with colorectal carcinoma
Background: Colorectal cancer is one of the most commonly diagnosed cancers and cancer- related death worldwide. Identification of new specific biomarkers could be helpful to detection of this malignancy. Altered plasma microRNA expression has been identified in many cancers, including colorectal cancer. Objectives: The main objective of this study was to identify the circulating microRNAs with the most expression changes in colorectal cancer patients compared with neoplasm free healthy individuals. Materials and Methods: MicroRNA expression profiling was performed on plasma samples of 37 colorectal cancer patients and 8 normal subjects using microRNA microarray. Quantitative real-time reverse transcription polymerase chain reaction was used to validate the two selected altered microR NAs. Plasma samples from 61 colorectal cancer patients and 24 normal subjects were used in our validation study. Results: In profiling study we found a panel of six plasma microRNAs with significant downregulation. MicroRNA-142-3p and microRNA-26a-5p were selected and validated by polymerase chain reaction. Our results demonstrated that expression levels of plasma microRNA-142-3p and microRNA-26a-5p were significantly downregulated in patients with colorectal cancer when compared to control group. Conclusions: Our findings suggest that downregulation of plasma microRNA-142-3p and microRNA-26a-5p might serve as novel noninvasive biomarkers in the diagnosis of colorectal cancer, although more studies are needed to highlight the theoretical strengths. © 2015, Iranian Journal of Cancer Prevention
MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells
A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei
MicroRNA-129-1 acts as tumour suppressor and induces cell cycle arrest of GBM cancer cells through targeting IGF2BP3 and MAPK1
Background MicroRNA-129-1 (miR-129-1) seems to behave as a tumour suppressor since its decreased expression is associated with different tumours such as glioblastoma multiforme (GBM). GBM is the most common form of brain tumours originating from glial cells. The impact of miR-129-1 downregulation on GBM pathogenesis has yet to be elucidated. Methods MiR-129-1 was overexpressed in GBM cells, and its effect on proliferation was investigated by cell cycle assay. MiR-129-1 predicted targets (CDK6, IGF1, HDAC2, IGF2BP3 and MAPK1) were also evaluated by western blot and luciferase assay. Results Restoration of miR-129-1 reduced cell proliferation and induced G1 accumulation, significantly. Several functional assays confirmed IGF2BP3, MAPK1 and CDK6 as targets of miR-129-1. Despite the fact that IGF1 expression can be suppressed by miR-129-1, through 30-untranslated region complementary sequence, we could not find any association between IGF1 expression and GBM. MiR-129-1 expression inversely correlates with CDK6, IGF2BP3 and MAPK1 in primary clinical samples. Conclusion This is the first study to propose miR129-1 as a negative regulator of IGF2BP3 and MAPK1 and also a cell cycle arrest inducer in GBM cells. Our data suggests miR-129-1 as a potential tumour suppressor and presents a rationale for the use of miR-129-1 as a novel strategy to improve treatment response in GBM
Viral MicroRNA Effects on Pathogenesis of Polyomavirus SV40 Infections in Syrian Golden Hamsters
Shaojie Zhang, Vojtech Sroller, Preeti Zanwar, Steven J. Halvorson, Nadim J. Ajami, Corey W. Hecksel, Jody L. Swain, Connie Wong, Janet S. Butel, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of AmericaChun Jung Chen, Christopher S. Sullivan, Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of AmericaJody L. Swain, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of AmericaEffects of polyomavirus SV40 microRNA on pathogenesis of viral infections in vivo are not known. Syrian golden hamsters are the small animal model for studies of SV40. We report here effects of SV40 microRNA and influence of the structure of the regulatory region on dynamics of SV40 DNA levels in vivo. Outbred young adult hamsters were inoculated by the intracardiac route with 1×107 plaque-forming units of four different variants of SV40. Infected animals were sacrificed from 3 to 270 days postinfection and viral DNA loads in different tissues determined by quantitative real-time polymerase chain reaction assays. All SV40 strains displayed frequent establishment of persistent infections and slow viral clearance. SV40 had a broad tissue tropism, with infected tissues including liver, kidney, spleen, lung, and brain. Liver and kidney contained higher viral DNA loads than other tissues; kidneys were the preferred site for long-term persistent infection although detectable virus was also retained in livers. Expression of SV40 microRNA was demonstrated in wild-type SV40-infected tissues. MicroRNA-negative mutant viruses consistently produced higher viral DNA loads than wild-type SV40 in both liver and kidney. Viruses with complex regulatory regions displayed modestly higher viral DNA loads in the kidney than those with simple regulatory regions. Early viral transcripts were detected at higher levels than late transcripts in liver and kidney. Infectious virus was detected infrequently. There was limited evidence of increased clearance of microRNA-deficient viruses. Wild-type and microRNA-negative mutants of SV40 showed similar rates of transformation of mouse cells in vitro and tumor induction in weanling hamsters in vivo. This report identified broad tissue tropism for SV40 in vivo in hamsters and provides the first evidence of expression and function of SV40 microRNA in vivo. Viral microRNA dampened viral DNA levels in tissues infected by SV40 strains with simple or complex regulatory regions.This work was supported in part by research grants R01 CA134524 (JSB) and R01 AI077746 (CSS) from the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Molecular BiosciencesEmail: [email protected]
MicroRNAs in the stressed heart: Sorting the signal from the noise
The short noncoding RNAs, known as microRNAs, are of undisputed importance in cellular signaling during differentiation and development, and during adaptive and maladaptive responses of adult tissues, including those that comprise the heart. Cardiac microRNAs are regulated by hemodynamic overload resulting from exercise or hypertension, in the response of surviving myocardium to myocardial infarction, and in response to environmental or systemic disruptions to homeostasis, such as those arising from diabetes. A large body of work has explored microRNA responses in both physiological and pathological contexts but there is still much to learn about their integrated actions on individual mRNAs and signaling pathways. This review will highlight key studies of microRNA regulation in cardiac stress and suggest possible approaches for more precise identification of microRNA targets, with a view to exploiting the resulting data for therapeutic purposes
Salmonella produce microRNA-like RNA fragment Sal-1 in the infected cells to facilitate intracellular survival.
Salmonella have developed a sophisticated machinery to evade immune clearance and promote survival in the infected cells. Previous studies were mostly focused on either bacteria itself or host cells, the interaction mechanism of host-pathogen awaits further exploration. In the present study, we show that Salmonella can exploit mammalian cell non-classical microRNA processing machinery to further process bacterial small non-coding RNAs into microRNA-like fragments. Sal-1, one such fragment with the highest copy number in the infected cells, is derived from Salmonella 5-leader of the ribosomal RNA transcript and has a stem structure-containing precursor. Processing of Sal-1 precursors to mature Sal-1 is dependent on host cell Argonaute 2 (AGO2) but not Dicer. Functionally, depleting cellular Sal-1 strongly renders the Salmonella bacteria less resistant to the host defenses both in vitro and in vivo. In conclusion, we demonstrate a novel strategy for Salmonella evading the host immune clearance, in which Salmonella produce microRNA-like functional RNA fragments to establish a microenvironment facilitating bacterial survival
Autism-associated SNPs in the clock genes _npas2_, _per1_ and the homeobox gene _en2_ alter DNA sequences that show characteristics of microRNA genes.
Intronic single nucleotide polymorphisms (SNPs) in the clock genes _npas2_ and _per1_ and the homeobox gene _en2_ are reported to be associated with autism. This bioinformatics analysis of the intronic regions which contain the autism-associated SNPs rs1861972 and rs1861973 in _en2_, rs1811399 in _npas2_, and rs885747 in _per1_, shows that these regions encode RNA transcripts with predicted structural characteristics of microRNAs. These microRNA-like structures are disrupted _in silico_ by the presence of the autism enriched alleles of rs1861972, rs1861973, rs1811399 and rs885747 specifically, as compared with the minor alleles of these SNPs. The predicted gene targets of these microRNA-like structures include genes reported to be implicated in autism (_gabrb3_, _shank3_) and genes causative of diseases co-morbid with autism (_mecp2_ and _rai1_). The inheritance of the AC haplotype of rs1861972 - rs1861973 in _en2_, the C allele of rs1811399 in _npas2_, and the C allele of rs1234747 in _per1_ may contribute to the causes of autism by affecting microRNA genes that are co-expressed along with the homeobox gene _en2_ and the circadian genes _npas2_ and _per1_
- …
