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Abstract 

Intronic single nucleotide polymorphisms (SNPs) in  the clock genes npas2 and per1 and 

the homeobox gene en2 are reported to be associated with autism. This bioinformatics 

analysis of the intronic regions which contain the autism-associated SNPs rs1861972 and 

rs1861973 in en2, rs1811399 in npas2, and rs885747 in per1, shows that these regions 

encode RNA transcripts with predicted structural characteristics of microRNAs. These 

microRNA-like structures are disrupted in silico by the presence of the autism enriched 

alleles of rs1861972, rs1861973, rs1811399 and rs885747 specifically, as compared with 

the minor alleles of these SNPs. The predicted gene targets of these microRNA-like 

structures include genes reported to be implicated in autism (gabrb3, shank3) and genes 

causative of diseases co-morbid with autism (mecp2 and rai1). The inheritance of the A-

C haplotype of rs1861972 - rs1861973 in en2, the C allele of rs1811399 in npas2, and the 

C allele of rs1234747 in per1 may contribute to the causes of autism by affecting 

microRNA genes that are co-expressed along with the homeobox gene en2 and the 

circadian genes npas2 and per1. 

 

Key words: Autistic Disorder; Polymorphism, Single Nucleotide; MicroRNAs; 

Biological Clocks; Genes, Homeobox; Cerebellum; Computational Biology;  Behavioural 

Genetics; RNA; Child Development Disorders.  
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Introduction 

A number of genes are considered to contribute to the heritability (1) of the neuro-

developmental disorder autism (2). Numerous candidate gene studies have been deployed 

(reviewed by Yang and Gill (3) for example) to bring further detail to epidemiological 

studies of autism. The choice of candidate genes has been guided by the results of whole 

genome screens for autism (for example, Palferman, Matthews, Turner et al. (4)); 

cytogenetic studies of affected individuals (for example, Wolff, Clifton, Karr et al. (5)) 

and genetic studies of disorders that show co-morbidity with autism, (reviewed, for 

example, by Zafeiriou, Ververi and Vargiami (6)). Overall, these candidate gene studies 

have not yet found any protein coding sequence changes that are significantly associated 

with autistic disorder.  

Single nucleotide polymorphisms (SNPs) in the introns of genes have however, been 

reported to show significant association with autistic disorder and some of these results 

have withstood replication. In en2, a gene involved in cerebellum development (7), the 

association of the intronic SNPs rs1861972 and rs1861973 with autistic disorder (8)  has 

been reinvestigated a number of times with overall positive but complex results (9, 10) 

that support evidence for abnormal cerebellar development in autism (11).  The reported 

association of per1 and npas2 with autistic disorder (12) is noteworthy given that specific 

sleep anomalies (13), altered circadian rhythm (14) and increased measures of oxidative 

stress are reported to be associated with autism (13, 15).  Per1 and npas2 regulate sleep 

in mammal (16, 17) and npas2 effects redox signaling (18, 19). The protein products of 

these genes interact (20), perhaps magnifying the effect of minor variations in these genes 
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in autism. Altered expression levels of circadian genes have also been linked to bipolar 

disorder (21) and schizophrenia (22), both indicated to share genetic overlap with autism 

(23). The autism-associated SNPs in per1, npas2 and en2 are however, all intronic. 

Parsimoniously they are considered to indicate that other functional changes may be in 

linkage disequilibrium with these autism-associated SNPs. But despite further 

investigation by the teams reporting association of rs1861972 (en2), rs1861973 (en2),  

rs1811399 (npas2),  and rs885747 (per1)  with autism, no other autism linked functional 

changes in these genes were established (8) (12).  

Recent findings in the field of small RNAs show that the introns of protein coding genes 

may harbour microRNA genes that encode small RNAs capable of regulating the 

function of many other genes at chromosomal locations remote from that of the micro-

RNA gene itself (24).  MicroRNA genes within the introns of protein coding genes are a 

priori transcribed concurrently along with the host gene and the genes en2, npas2 and 

per1 are all expressed in brain regions relevant to autism (25, 20, 16).  In this study we 

sought to investigate whether the intron regions containing the autism-associated SNPs: 

rs1861972 (en2); rs1861973 (en2); rs1811399 (npas2) and, rs885747 (per1) show 

characteristics of human microRNA genes which might be affected by the autism-

associated SNPs. 

MicroRNAs regulate development (26). They are abundant in the mammalian central 

nervous system (27) and are reported to play a role in Fragile-X sydrome (28), Tourette’s 

syndrome (29) and perhaps schizophrenia (30, 31) and autism (32). Mammalian mature 

microRNAs are short (21 to 23 nucleotide) RNA molecules that together with proteins of 
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the RISC complex effect gene silencing (33). The precursors of microRNAs are derived 

from intergenic microRNA genes (34) or microRNA genes within introns of protein 

coding genes. Indeed some 50% of human microRNA genes appear to be intronic (35). 

MicroRNA gene transcripts contain complementary base paired hairpin regions (pri-

microRNA hairpins) that are processed into pre-microRNA hairpins by the action of the 

enzyme DROSHA. The length, stability, architecture and sequence of the pri-microRNA 

hairpin are determinants of DROSHA-processing and distinguish microRNA hairpins 

from random hairpins within the genome (36), (37) . The ~60-100 nt long pre-microRNA 

hairpins are transported to the cytoplasm by EXPORTIN-5. Here the loop and tail are 

removed by the RNase III enzyme DICER and the remaining ~22nt double stranded 

mature microRNA loaded into the protein complex RISC. The gene specific targeting of 

this silencing complex is determined by the nucleotide sequence of the mature microRNA 

loaded RISC and particularly the seed (the first 2 to 8 nucleotides, 5’ to 3’) of the mature 

22 nucleotide microRNA. Binding of mature microRNA loaded RISC  to the UTRs of 

target genes causes translational repression of the target (38) or rapid degradation of the 

transcript of the target gene (39).  

MicroRNAs regulate cellular processes that are relevant to the study of autism e.g.: 

developmental timing (26, 40); cell death (41); the patterning of the nervous system (42); 

and, the survival of Purkinje neurons (43), a cell type affected in cases of autism (11). 

SNPs in microRNA genes can profoundly affect the target specificity and gene silencing 

power of microRNAs (44, 45). We wondered, therefore, whether intronic SNPs that are 

associated with autistic disorder may represent allelic variation in microRNA genes 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
36

6.
1 

: P
os

te
d 

3 
O

ct
 2

00
8



Autism-associated SNPs in en2, npas2 and per1 disrupt RNA hairpin structures 

 6

transcribed from the introns of en2, npas2 and per1. In this report we analyse the intronic 

autism-associated SNPs rs1861972 (en2); rs1861973 (en2); rs1811399 (npas2) and, 

rs885747 (per1) to consider whether the RNA transcripts of the intron regions containing 

these autism-associated SNPs have features typical of microRNAs and, if so, whether 

their predicted target genes are relevant to autism. 

 

Materials and Methods 

(Autism enriched alleles are shown in bold throughout) 

We carried out a bioinformatics analysis of the RNA transcripts encoded by introns 1, 2, 

and 12 of human en2, npas2 and per1, respectively. Initially, we scanned for pri-

microRNA-like structures using the web based bioinformatics tool RNAanalyser 

http://rnaanalyzer.bioapps.biozentrum.uni-wuerzburg.de (67). We subsequently 

determined whether the autism-associated SNPs rs1861972, rs1861973, rs1811399 and 

rs885747 are co-located within any computer predicted pri-microRNA-like structures. 

Where hairpins were found, special attention was given to: the overall energy of the 

hairpin, the number of nucleotides in the hairpin, the number and distribution of 

symmetric vs. asymmetric bulges, the number of nucleotides in each arm of the hairpin 

and the size of the terminal loop. The results were analysed with reference to the 

principles of microRNA discovery described by Berezikov, Cuppen and Plasterk (46) and 

Stark, Lin and Kheradpour et al. (36). Any pri-microRNA-like structures found to contain 

an autism-associated SNP were re-analysed to find the effect of the autism-associated 

SNPs on the structure of any pri-microRNA-like hairpins. This was an important step 
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because even if the computer predicted promising pri-microRNA-like structures, unless 

one or other allele made some substantial difference to the hairpin, by altering its 

structure or affecting a potential seed sequence, the overall argument would fail. SNPs 

lying within candidate  seed regions of any pre-microRNA-like structures were deemed 

of greater impact over SNPs lying outside the seed, but, SNPs that disrupted the 

configuration of the hairpin would a priori have greatest impact overall. Pri-microRNA-

like structures were screened for DROSHA processing sites (required to generate a pre-

microRNA from a pri-microRNA) using the bioinformatics tool Microprocessor SMV in 

silico DROSHA described by Helvik, Snøve and Sætrom (47) . 

To determine what would be the predicted target genes of a mature microRNA, derived 

from any such hairpins found harbouring one of the autism-associated SNPs, each arm of 

the pre-microRNA-like structures was analysed to indicate the likely 5’ start of the 

mature microRNA region. Using the principles of mature microRNA recognition 

described by Stark et al. (36) and Berezikov et al. (46) both the 5’ and 3’ arms of 

candidate pre-microRNAs were analysed since experimentally confirmed microRNAs 

have been reported to be produced from both 5’ and 3’ microRNA arms (hsa-mir-10b and 

hsa-mir-10b*, for example (48)). Primary consideration was  given to the number of 

complimentary matches between each candidate seed and the nucleotide sequences of the 

3’ UTRs (microRNA targets) of all known protein coding genes in the human genome. 

For this analysis the TargetScan tool (http://microrna.sanger.ac.uk) was used (49). It has 

been shown that verified microRNAs generally have numerous (~150-300) targets and 

the start point of verified mature microRNAs often coincides with a trend peak in a seed 
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vs number-of-seed-matches plot for a given microRNA (36).  Thus if candidate seeds are 

considered (by a heptomer window moved one nucleotide at a time along a hairpin arm) 

and the number of predicted targets recorded for each seed,  then  a trend in the number 

of targets (increasing to a peak then decreasing over a section of the span of the 

microRNA arm) can indicate the start point of the mature microRNA contained within 

that arm (36) (see Figure 1). However, when looking for target number trends it is 

important to consider the position of the candidate seeds in relation to the overall 

structure of the candidate hairpins. For example, seeds in the 3’ arm which represent start 

points of candidate microRNAs shorter than 22 nucleotides were disregarded, as were 

seeds in 5’arms that would define candidate microRNAs where the 3’ end of the mature 

microRNA coincided with the loop region of the candidate hairpin. We noted candidate 

seed sequences containing mismatches (likely start points) and uracil nucleotides at the 

start of a candidate microRNA because nucleotide-one of verified mature microRNAs is 

biased towards being uracil (36).   BLASTN and SSEARCH tools were also used to 

consider sequence conservation. Searches were performed using the web based tools in 

MirBASE (http://microrna.sanger.ac.uk (49)). Thus a number of arguments were 

deployed against the notion that hairpins containing autism-associated SNPs are bona fide 

microRNA genes. 

Insert Figure 1 about here 

The two SNPs (rs1861972 and rs1861973) in en2, reported by Benayed, Gharani, 

Rossman et al. (8) to be associated with autistic disorder are physically close together in 

the single intron of en2 and were therefore analysed together.  The analysis took account 
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of all four possible combinations of allele; A-C, A-T, G-C and G-T. The results were 

compared with the haplotype analysis of Benayed et al. (8) that showed the A-C 

haplotype to be significantly associated with autism (p = 0.0000067 narrow phenotype).  

We also considered the effect of any other common SNPs reported in this region. 

For rs1811399 in npas2, an intronic code block of some 300 nucleotides surrounding the 

SNP was analysed. This block contained no variation according to 

http://www.ensembl.org (release 50) apart from the autism-associated SNP. Thus only 2 

structures were computed for the region containing npas2 rs1811399, one for the A allele 

and one for the autism enriched C allele. 

Two SNPs occur in intron 12 of per1 (Ensembl release 40). Rs885747(C/G), that is 

reported to be associated with autism (12) and rs885953(G/C), that has not been reported 

to have been investigated in autism. The four possible combinations of allele for the 

SNPs in intron 12 of per1 were used in the computation of transcript structures. 

Finally using publicly available software (http://microrna.sanger.ac.uk/ (49)), we 

analysed  the best candidate mature microRNAs of any pre-microRNA-like structures 

found, to determine what would be the predicted targets for these microRNA-like 

structures. Sets of target genes thus derived were scanned for overlap and for genes with 

particular relevance to autism. 

In summary, we set out to answer four main questions: Firstly, could the genomic DNA 

sequence fragment containing the autism-associated SNP generate a pri-microRNA-like 

hairpin? Secondly, do the autism enriched alleles specifically disrupt pri-microRNA-like 

structures or change the seed sequence of a candidate mature microRNA-like region? 
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Thirdly, if candidate microRNAs are detected, what are the predicted target genes of the 

candidate microRNAs? And finally, is there overlap between the targets of each of the 

candidate microRNAs and if so, do the common targets have relevance to autism? 

 

Results 

Analysis of  of en2 intron 1 sequence fragment containing the autism associated SNPs 

rs1861972(A/G) and rs1861973(T/C).   

The autism-associated haplotype rs1861972(A)-rs1861973(C) is estimated to contribute 

to the risk of disease in 40% of cases in the general population (8). These SNPs are 

situated in the 3’ half of the single large intron that divides the two exons of en2 (7q 

31.1). The two SNPs are 151 nucleotides apart and were analysed together in a 300 

nucleotide genomic DNA sequence fragment (Ensembl 2008 release 40). Two other 

SNPs are present in this sequence fragment; rs35529773 (C/-) for which linkage data was 

not publicly available and rs3824067 (T/A) that is well characterised and has T as the 

ancestral allele (Ensembl release 50). We took account of these SNPs in our analysis, 

computing transcript structures for all the possible combinations of alleles (four-marker-

haplotypes) of the two autism-associated SNPs together with rs35529773 and rs3824067. 

Eight out of the sixteen possible allele combinations (four-marker-haplotypes) permitted 

the formation of a long 103 nucleotide pri-microRNA-like hairpin (Figure 2A) with a 4 

nucleotide loop. The 3’ arm was 58 nucleotides long and the 5’ arm 43 nucleotides long. 

(The total number of nucleotides in 90% of validated microRNAs ranges from 73 to 102 

with arm length between 31 and 47 and loops between 4 and 26). This hairpin was always 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
36

6.
1 

: P
os

te
d 

3 
O

ct
 2

00
8



Autism-associated SNPs in en2, npas2 and per1 disrupt RNA hairpin structures 

 11

completely disrupted by the presence of the autism-associated rs1861972(A)-

rs1861973(C) haplotype but never disrupted by the presence of the rs1861972(G)-

rs1861973(T) haplotype, regardless of which alleles of SNPs rs35529773 and rs3824067 

accompanied rs1861972 A/G-rs1861973C/T (Figure 2A). The rs1861972(G)-

rs1861973(C)  haplotype induced a small central bulge in the main stem and a change in 

a candidate seed sequence of the mature mirRNA-like region of the hairpin. Further 

analysis using Microprocessor SMV in silico DROSHA (47) gave a  PPV  >0.47 for a 

DROSHA processing site for this hairpin with the T allele present in the hairpin and a  

PPV  <0.3 for the hairpin with the C allele. 

Insert Figure 2 about here 

No trend peak was found in the number of seed matches along the 5’arm. The 3’ arm 

however, showed two regions of target number trend with the closely base paired stretch 

in the central region of the 3’ arm of this pre-microRNA–like structure encoding the seed 

sequences of three different established microRNAs. (More than one mature microRNA 

can be expressed from a given arm of a micro RNA (50)). The overlapping seed 

sequences of miR-10, miR-339 and miR-504 each contain the autism-associated SNP 

(see Figure 3). Intriguingly, miR-10 is reported to play a role in hind brain development 

(51) that is in keeping with the function of the en2 gene in the cerebellum development 

(52) and with reports of cerebellum anomalies in autism (11).  For the 3’ arm of this en2 

hairpin we took the two best candidate seeds for investigating predicted targets of this 

hairpin; UACAGCG and ACCCUGU, the seed of human miR-10 (see Figure 3).   

Insert Figure 3 about here. 
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Analysis of the intron region of npas2 containing the autism-associated SNP rs1811399 

(C/A)  

A 300 nucleotide DNA sequence fragment  (ensemble release 50) centred upon the SNP 

rs1811399 in npas2 was analysed to determine the predicted structural characteristics of 

the RNA transcript of this intron region. Two DNA sequence fragments were analysed 

for this SNP, identical except that one contained the A allele and the other the autism 

enriched C allele of rs1811399.  The results of the analysis gave two different RNA 

structures as shown in Figure 2B.  The 5’ arm of the  hairpin computed with the A allele 

of rs1811399 contains 50nt. The loop 4nt, the 3’ arm, 44nt and the hairpin in total 101nt. 

These measures are in keeping with the majority of verified microRNAs (36). The 

rs1811399 SNP is predicted to be located within the 5’ arm of the long RNA hairpin 

containing the A allele of rs1811399, towards the loop of this pri-microRNA-like 

structure. Figure 2C shows the folding of the fragment containing the rs1811399 SNP. 

Disruption of the hairpin containing the A allele of rs1811399 is predicted when the A 

allele is replaced by the autism enriched C allele. To further challenge the plausibility of 

this structure being a precursor for a functional microRNA, we searched for DROSHA 

binding sites within the pri-microRNA-like hairpin. Using the web based bioinformatics 

tool, Microprocessor SVM in silico DROSHA (47), we were able to detect a DROSHA 

processing site that would derive a pre-microRNA-like structure shown in Figure 1B. The 

PPV for the DROSHA sites in this hairpin  were >0.38 for the C allele and <0.36 for the 

fragment containing the A allele.    
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Seed-match target number trends were observed along the 5’ and 3’ arms of this hairpin 

(S.I. F2). In the 5’ and 3’ arms, seed-match trend peaks coincided with base pairing 

mismatches and were taken as likely mature microRNA start points. The two best 

candidate seeds, one from the 5’ arm and one from the 3’arm, were used for investigating  

the predicted targets of this hairpin  using the web based tool TargetScan (49). 

 

Analysis of intron 12 of of per1 containing the autism-associated SNP rs885747 (C/G) 

Intron 12 of per1 contains two  SNPs:  rs885747, that Nicholas, Rudrasingham and Nash 

et al. (12) found to be associated with autistic disorder (C allele) and rs885953 that was 

not analysed in their experiment.  There is remarkable conservation amongst primates of 

the predicted hairpin structure of the RNA transcripts of this intron (see SI File 1, per1). 

In H. sapiens this hairpin structure is strongly affected by the allele combination at these 

two loci (see Figure 2C). Due to the small size of the intron, the conservation of  

predicted hairpin structure amongst primates and the high GC content of this intron, 

61.36% compared with 55.6 +/- 1.56 for short introns in general (45),  we considered that 

this intron may best be analysed in terms of the structural features of mirtrons (53, 54). 

Mirtrons are mircoRNAs transcribed from small introns that bye-pass the DROSHA 

cleavage step in the micro RNA pathway by way of splicing at the intron/exon 

boundaries and where the pri-microRNA hairpins lack an extended tail. The mature 

microRNA within such mirtrons is located in the closely base paired region distal to the 

central loop as compared with canonical pri-microRNAs where the mature microRNA is 

generally located proximal to the loop of the pri-microRNA. 
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In silico analysis shows that the G-C and C-G haplotypes of these two SNPs allow 

folding into mirtron-like hairpins while the G-G and C-C haplotypes preclude hairpin 

formation. To predict start points of candidate mature microRNAs produced from these 

hairpins, trends in the number of seed-matches along the 5’ and 3’ arms were considered. 

For the hairpins containing the C-G and G-C haplotypes, two peaks indicated plausible 

start points, one in the 5’arm of the closely paired region and one in the 3’ arm of the 

closely paired region. Seed-match trend peaks that fell outside of the closely paired 

region of the hairpin, in the more loosely base-paired region towards the loop, were 

disregarded as being less likely to contribute to a candidate mirtron (see Figure 4). The 

G-C haplotype containing the autism enriched C allele of rs885747 presents a 

conformation that shifts the location of the 5’ arm seed-match trend peak (relative to its 

position in the 5’end of the closely paired region in the C-G haplotype) to a region of the 

G-C hairpin where it is less likely to represent a start point for a mature microRNA; a 

start point corresponding to a mature microRNA with a 3’ end extending beyond the 

closely base paired region of the hairpin. Subtle structural changes between G-C and C-G 

haplotypes affecting  the region at the start of the closely base paired region of the 3’ arm 

may have an effect but no gross change in the 3’arm’s closely paired region is associated 

with the difference between the two alleles of rs885747 (according to our analysis). 

Therefore we focused on further investigation of the effect of rs885747 on the 5’ arm’s 

candidate mature microRNA and specifically the 22 nucleotide closely paired region at 

the 5’ end of the hairpin as the region of the candidate mirtron affected by the autism 

associated SNP rs885747. 
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Overlap between the sets of predicted targets for the en2 npas2 and per1 candidate 

microRNAs 

The predicted targets of the candidate microRNAs from en2, npas2 and per1 (see S.I. 

F.2) included a number of autism candidate genes: Rai1, gabrb3, gabrb2, shank3, nrxn3, 

reln, pitx1, shank3-interacting-protein-1, a2bp1, stk39 and dlx1 (3, 6). We further 

screened the total target data for overlap and found six target genes were common to the 

data sets corresponding to each of the candidate microRNA’s predicted targets.  The 

common targets were acvr1b, dab2ip, map2k4, mtmr4 and rai1. The relationship between 

autism relevant targets of the candidate microRNAs and the candidate host genes are 

summarized in Table 1. 

 

Discussion 

The above findings suggest that introns 1, 2 and 12 of the genes en2, npas2 and per1 

respectively, may harbour microRNA genes that are affected by the autism-associated 

SNPs rs1861972, rs1861973, rs1811399 and rs885747. We have shown that all of these 

SNPs alter microRNA-like structures, predicted for the mRNA transcripts of the genomic 

DNA sequence fragments containing these SNPs. The presence of one (the autism 

enriched) but not the other, allele of each SNP disrupts hairpin structure or changes a 

candidate seed sequence and thereby the predicted target specificity of the microRNA-

like structure.  
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For en2, the RNA structural analysis was extended by the presence of four SNPs 

(rs3824067, rs1861972, rs35529773 and rs1861973) in the region of interest. We found 

that eight of the sixteen possible combinations of allele gave a long hairpin that always 

formed in the presence of the G-T rs1861972-rs1861973 haplotype. Notably, this hairpin 

structure never formed when the autism associated A-C rs1861972-rs1861973 haplotype 

was present and which may relate to the highly significant association for the A-C 

haplotype observed by Benayed et al. (8).  Further comparing our results we see that in 

all of the samples presented by Benayed et al. (AGRE 1, AGRE 2, NIMH and the DSP 

siblings) (8), the A-C haplotype was always over-transmitted from parents to affected 

individuals while the G-T haplotype was always under-transmitted to affected individuals 

and occurred less in the set of unaffected sibs in the DSP (discordant sib pair) test.  Our 

structural findings precisely mirror the data for Benayed et al. showing that the autism 

associated A-C haplotype always accompanies hairpin disruption while the G-T 

haplotype always supports a predicted hairpin structure. 

Recently Brune, Korvatska, Allen-Brady et al. (9) confirmed association of rs1861972 

with autism (rs1861973 was not analysed in their study). However, according to Brune et 

al. (9) the A and G alleles of rs1861972 both proved positive but in different samples 

within their study.  Our findings offer an explanation supporting and additional to that 

presented by Brune et al. (9). Our structural analysis shows that the A and C alleles of the 

rs1861972-2861973 haplotype are required for disruption of the hairpin regardless of the 

genetic background (i.e. which alleles of the other two SNPs in this fragment accompany 

the A-C rs1861972-rs1861973 haplotype). However, the G-C rs1861972-rs1861973 
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haplotype causes complete disruption when accompanied by the A allele of rs3824067 

but only partial disruption with the T allele of rs3824067. If, in the populations studied by 

Brune et al. (9) and Benayed et al. (8), disruption of this en2 hairpin contributes to the 

cause of autism then the presence of either the A or G allele of rs1861972 could effect 

this disruption and thus be linked with autism. We therefore tentatively suggest that 

variation at rs1861972 and rs1861973 affects microRNA mediated regulation of the 

levels of targets such as a2bp1, auts2, bdnf, gabrb3, htr2a, nf1, shank3 and rai1 in cells 

expressing the homeobox gene en2 in autism (see table 1). 

In npas2, the disruption of the hairpin by the presence of the autism enriched C allele of 

rs1811399 is also in keeping with the notion of a loss of microRNA mediated regulation 

in NPAS2-expressing cells in autism. This is consistent with the route to disequilibrium 

in autism reported for rs1811399 (12) as the enrichment of the C allele (disrupted 

hairpin) in autism occurred through an under-transmission of the A allele (intact hairpin). 

The gene targets of the candidate microRNA shown in Figure 1B containing the A allele 

of rs1811399 includes genes of particular relevance to autism: rai1, gabrb3, gabrb2, 

nlgn2, pitx1, shank3-interacting-protein-1, stk39, nrxn3, dlx1 and reln (see table1).  We 

therefore tentatively suggest that the enrichment of the C allele of rs1811399 in autism 

compromises the potential for microRNA dependent gene regulation in NPAS2 

expressing cells.  

The results for per1 suggest that intron 12 of per1 may encode a mirtron (microRNAs 

expressed from small introns). They also indicate how the autism associated SNP 

rs885747 in intron 12 may cause disruption of the more likely functional structure 
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represented by the C-G haplotype of rs885953-rs885747 when the rs885747 C allele is 

accompanied by the rs885953-G allele. Loss of the structure represented by the C-G 

haplotype of rs885953-rs885747 may equate to a loss of microRNA mediated regulation 

of targets that include the autism linked rai1 (55, 56) and the Down syndrome related 

kinase Dyrk1a (6, 57-59). If this microRNA exists and is active in autism then our model 

would also implicate rs885953, a SNP which is not currently fully characterized 

(www.hapmap.org). Thus, for the autism-associated SNP rs1811399 in npas2 and the 

rs1861972-rs2861973 A-C haplotype in en2 the autism-associated allele of rs885747 in 

per1 appears to force a structural change in a predicted hairpin that may result in the loss 

of microRNA mediated regulation.   

It is likely that a number of genes contribute to the heritability of autism (1). We therefore 

considered whether the effect of hairpin disruption by the autism associated SNPs in the 

genes en2, npas2 and per1 might be additive, in terms of lost targeting, and we proposed 

that this could be represented by overlap between the data sets of targets of these 

candidate microRNAs and that the genes common to each data set should have relevance 

to autism.  We pooled the target data for each of the candidate microRNAs in en2, npas2 

and per1 and found five genes that appeared in each of the target gene sets of the 

candidate microRNAs.  These genes were acvr1b, dab2ip, map2k4, mtmr4 and rai1.  

Intriguingly rai1 and map2k4 are both located at the autism susceptibility locus 17p11.2, 

a chromosomal region where deletion or duplication is linked to Smith Magenis 

Syndrome or Potocki-Lupski Syndrome, respectively, and which convey an autism 

phenotype. Evidence suggests that genes in this region, especially rai1, affect neural 
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development in a dose-dependent manner (63).  Map2k4 (17p11.2) is linked to the 

cellular response to oxidative stress (60) and along with npas2, may be implicated in 

oxidative stress induced apoptosis of dopaminergic neurons (61).  Acvr1b (12q 13.13) is 

the activinA receptor, type IB gene. Activin is found to modulate anxiety-related 

behaviour and adult neurogenesis in mouse and to play a role in recovery from ischemic 

brain injury (62). Dab2ip (9q33.2) transduces TRAF2-induced ASK1-JNK activation 

(63) and thus plays a central role in the oxidative stress response pathway (64) which is 

reported to be affected in autism (15).  Mtmr4 (17q22) is a lipid phosphatase for 

phosphatidinositol-3-phosphate (PtdIns3P) (65) and disrupted phosphatidylinositol 

signalling is also reported in autism (66).  

It is not currently possible to verify the existence of microRNA genes on the basis of 

bioinformatics analysis alone and substantiation of the above findings would require 

additional experiments beyond the scope of this study. However, our results suggest a 

mechanism whereby certain intronic autism-associated SNPs may have functional 

significance and moreover how common SNPs may act in combination to alter 

phenotype. N
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Table 1: Table showing the predicted targets of the candidate microRNAs in en2, npas2 
and per1 
 
                              
                                   Host gene 

 
Npas2 

 
En2 

 
Per1 

 
5’ 

 
3’ 

 
3’ 

  
3’ 

  
5’ 

  
 

Arm of candidate microRNA 
 

 
Seed of candidate mature 

microRNA 

 
 

UCUGGAG 

 
 

ACAGUCA 

 
 

ACCCTGT 
hsa-mir-10 

 

 
 
 

 
 

TTACAGC 
 

 
 
 

 
 

GGACAGG 
 

 
 
 

 
 
number of predicted targets 

 
 

246 

 
 

235 

 
 

178 

 
 
 

 
 

564 

 
 
 

 
 

159 

 
 
 

 
 
 
 

Autism relevant targets 
of the candidate microRNAs 

 
GABRB2 
MECP2 
NLGN2 
 
ARID1A- 

 
GABRB3 
PITX1 
NRXN3 
RAI1 
RELN- 
STK39 
 
TLK1- 
MITF+ 
ProSAPiP1 

 
BDNF 
SHANK3^ 
NF1 
FLT1+ 

 
 
 
 
 
 
 
 

 
A2BP1^ 
AUTS2 
DLX1 
GABRB3 
HTR2A 
RAI1 
 
ARID1A- 
SCHIP1+ 
TLK1- 

 
 
 
 

 
DYRK1A 
RAI1 
 
FLOT2- 
KIF1A^ 

 
 

 
 
Targets common to candidate 
microRNAs from each gene 

 
ACVR1B       
DAB2IP 
MAP2K4 
MTMR4 
RAI1 
 

       

 
 
Table 1  

Table 1 shows the seed sequences of the candidate mature microRNAs in en2, npas2 and 

per1 in relation to their autism relevant target genes. The symbols + or - after a gene 

name indicate genes that are reported to show altered expression levels in autism.  

Similarly, ^ indicates genes that are found in micro-deletions associated with autism. 

Bold indicates genes that are reported to show positive association with autism and genes 

shown in italics are considered to play a causative role in disorders co-morbid with 

autism. The synaptic protein ProSAPiP1 is included as a SHANK3 interacting protein.
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Titles and Legends to Figures 

 

Figure 1: Candidate microRNA from intron 2 of npas2 and verified human 

microRNA hsa-mir-10b for comparison 

Figure 1 shows the candidate microRNA from intron 2 of npas2 (containing the autism 

associated SNP rs1811399) as compared with the verified human microRNA hsa-mir-

10b. Bold black arrows indicate the position of predicted DROSHA binding sites while 

fine black arrows indicate candidate seeds in the 5’ arm of the candidate microRNA in 

npas2. Graph A shows a plot of the candidate seeds (1A, 2A, 3A etc.) vs. the number of 

predicted seed matches while inset B and C show the predicted structures of the npas2 

candidate microRNA and has-mir-10b, respectively, after DROSHA cleavage. 

 

Figure 2 :The effect of autism associated SNPs on RNA hairpin structures in 

intronic transcrips of en2, npas2 and per1. 

Figure 2A shows the  predicted secondary structures of RNA transcripts from the region 

of  intron 1 of en2 containing the autism-associated SNPs rs1861972 and rs1861973. In 

silico analysis predicts that different transcript structures are determined by the various 

allele combinations of rs1861972, rs1861973, rs3824067 and rs35529773. The long 

hairpin (candidate microRNA) is, in all cases, disrupted by the presence of the autism-

associated haplotype rs1861972(A)-rs1861973(C). 2B shows the  predicted secondary 

structure of the RNA transcript from the region of  intron 2 of npas2 containing the 

autism-associated SNP rs1811399. A long hairpin is predicted with the A allele which is 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
36

6.
1 

: P
os

te
d 

3 
O

ct
 2

00
8



Autism-associated SNPs in en2, npas2 and per1 disrupt RNA hairpin structures 

 30

disrupted by the autism enriched C allele of rs1811399. 2C shows the predicted 

secondary structure of the RNA transcript of intron 12 of per1. This intron contains two 

SNPs: rs885953 and autism-associated rs885747. The C-C and G-G haplotypes preclude 

formation of a mirtron-like structure which is permitted by the presence of the C-G and 

G-C haplotypes. 

 

Figure 3: Candidate microRNA from En2 intron1 containing the autism-associated 

SNP rs1861973. 

Figure 3 shows the en2 candidate microRNA that contains the autism-associated SNP 

rs1861973. Candidate seed vs. number of targets are shown for the 5’ and 3’ arms in 

boxes A and B respectively. Note the seed sequences of three known human microRNAs 

are represented in the candidate mature microRNA region of the 3’ arm. 

 

Figure 4: Predicted RNA secondary structures of the transcript of intron 12 per1 

containing the autism associated SNP rs885747 

Figure 4 shows the predicted folding of the complete transcript of human per1 intron 12. 

The 4 combinations of allele of the two SNPs in this intron determine different RNA 

secondary structures, two of which are mirtron-like. The graphs in the bottom half of the 

figure show number of seed matches vs candidate seed for the 5’ and 3’ arms of the 

mirtron-like structures. The shaded region in the graph relating to the 5’arm (bottom left) 

delineates seed matches that would be excluded as candidate seeds in the G-C haplotype. 

This region in the C-G haplotype would be single stranded and upstream of the double 
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stranded mirtron-like region. A seed match peak coinciding with a likely start site (black 

arrow C-G haplotype) would be relocated in the G-C haplotype structure to an unlikely 

start position, and thus lost as a candidate seed. The grey arrow indicates a likely start 

position for the G-C haplotype 5’candidate microRNA. This start point has a low seed 

match number and is thus a less likely candidate mature microRNA.  For the 3’ arm, the 

shaded region in the graph (bottom right) relating to the C-G haplotype indicates seed 

matches which would be lost in the G-C haplotype by their relocation to the loop region 

of the G-C haplotype structure.   
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Stem length 95nt 
energy -39.70 kcal/mol 
(containing candidate  

 miRNA) 

Stem length 91nt  
energy -37.20 kcal/mol   

mature hsa-mir-10b   
(shown as black bars) 

Candidate miRNA  
from npas2 intron 2 

Example of a verified  
human microRNA  
(hsa-mir-10b) 

A 

(8A) 

(10A) 
(9A) 

hs
a-

m
ir-

10
b hsa-m

ir-10b* 

                                     npas2 fragment 
cagaaggcugugguc  aggucuggaggucagggcauggugaucacag 
cggcugccugacagucacugcccagagcuucccuua  ccauaaccuuccu  

B  

C  

(A4) ucuggag 

(4A) 
ucuggag 

5’ 

5’ 

5’ 

5’ 

rs1811399 (A) 
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A 

Disruption of the  
candidate miRNA   
by the C allele  
of  rs1811399 

Candidate miRNA 
in npas2 containing  
rs1811399  A allele 

C B  

C-G 

Disrupted hairpins 

G-G C-C 

rs885953 - rs885747  
C-G haplotype in per1  
candidate mirtron   

G-G and C-C haplotypes  
Precludes candidate 
 mirtron  formation 

G-C 

Mirtron-like  structures 

rs885953 - rs885747 
G-C haplotype in per1  
candidate mirtron   

G-C haplotype with  
rs3824067 T allele 

A-C haplotype with  
rs3824067 A allele  

G-T haplotype with   
rs3824067 A allele 

A-T haplotype with  
Rs3824067 A allele 

G-C haplotype with rs3824067  
A allele and rs35529773 deletion 

A-C haplotype with rs3824067 
A allele and rs35529773 deletion 

A-T haplotype with rs3824067 
A allele and rs35529773 deletion  

G-T haplotype with rs3824067  
A allele and rs35529773 deletion  

A-C haplotype with 
rs3824067 T allele 

G-C haplotype with  
rs3824067 T allele 

G-T haplotype with  
rs3824067 T allele 

A-T haplotype with  
rs3824067 T allele 

A-T haplotype with rs3824067  
T allele and rs35529773 deletion 

G-C haplotype with rs3824067  
T allele and  rs35529773 deletion 

A-C haplotype with rs3824067  
T allele and rs35529773 deletion  

G-T haplotype with rs3824067  
T allele and rs35529773 deletion 
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3’ 5’ 

UUACAGCG 

ACCCUGU is the seed of human miR-10 

GACCCUG is the seed of human miR-504 

CCCUGUC is the seed of human miR-339 

U =  rs1861973 C/T 

(1B) 

(8B) 

(9B) 

(10B) 

(1A) 

(3A) 

(2A) 

(4A) 

A 

B 
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Disrupted hairpins 

C‐C 

Mirtron‐like  structures 

G‐C 

rs885747 C 

rs885953 G 

5’ 

5’ 

5’ 

C‐G 

rs885953 C 

rs885747 G 

5’ 

G‐G 

5’ 5’ 

rs885953 G ‐ rs885747 C 
G‐C haplotype in candidate 
Mirtron   

rs885953 C ‐ rs885747 G 
C‐G haplotype in candidate 
Mirtron   

G‐G and C‐C haplotypes  
Precludes candidate 
 Mirtron  forma@on 
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