1,706 research outputs found

    Brownian Motions on Metric Graphs

    Get PDF
    Brownian motions on a metric graph are defined. Their generators are characterized as Laplace operators subject to Wentzell boundary at every vertex. Conversely, given a set of Wentzell boundary conditions at the vertices of a metric graph, a Brownian motion is constructed pathwise on this graph so that its generator satisfies the given boundary conditions.Comment: 43 pages, 7 figures. 2nd revision of our article 1102.4937: The introduction has been modified, several references were added. This article will appear in the special issue of Journal of Mathematical Physics celebrating Elliott Lieb's 80th birthda

    Barcode Embeddings for Metric Graphs

    Full text link
    Stable topological invariants are a cornerstone of persistence theory and applied topology, but their discriminative properties are often poorly-understood. In this paper we study a rich homology-based invariant first defined by Dey, Shi, and Wang, which we think of as embedding a metric graph in the barcode space. We prove that this invariant is locally injective on the space of metric graphs and globally injective on a GH-dense subset. Moreover, we show that is globally injective on a full measure subset of metric graphs, in the appropriate sense.Comment: The newest draft clarifies the proofs in Sections 7 and 8, and provides improved figures therein. It also includes a results section in the introductio

    NLS ground states on metric graphs with localized nonlinearities

    Get PDF
    We investigate the existence of ground states for the focusing subcritical NLS energy on metric graphs with localized nonlinearities. In particular, we find two thresholds on the measure of the region where the nonlinearity is localized that imply, respectively, existence or nonexistence of ground states. In order to obtain these results we adapt to the context of metric graphs some classical techniques from the Calculus of Variations.Comment: 18 page
    • …
    corecore