2,484,783 research outputs found

    Combined membrane process for dealcoholization of wines: Osmotic distillation and reverse osmosis

    Get PDF
    The demand of beverages with low or zero alcohol content is fast growing over the last years for health benefits of drinkers and more restrictive policies in alcohol consumption. Membrane processes are nowadays the most commonly used. They have undoubtedly led to improvements in quality, particularly for the low processing temperatures, but determined volatile compounds loss which in many instances resulted in unsatisfactory sensory quality. This study evaluates the combination of two membrane processes for the production of lower alcohol wines: osmotic distillation (OD) and reverse osmosis (RO). It aims for retain the flavour, preserve the good taste of wine with low alcohol content. A red wine (13.2 %v/v) was reduced in alcohol strength of about -5, -6, -8 %v/v through a RO and OD combined process: the initial wine was firstly treated through RO and was subsequently processed through OD to obtain partial dealcoholized wines. Such wines were then compared with those obtained through OD technique. Low alcohol wines were analysed for chemico-physical parameters and volatile composition. The results showed a better retention of the main chemical properties and volatile compounds in wines with low alcohol content obtained through the combined OD and RO process than those through single OD

    Changes in membrane lipids drive increased endocytosis following Fas ligation

    Get PDF
    Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex

    Get PDF
    Class II Major Histocompatibility complex (MHC-II) is a polymorphic heterodimer that binds antigen-derived peptides and presents them on the surface of antigen presenting cells. This mechanism of antigen presentation leads to recognition by CD4 T-cells and T-cell activation, making it a critical element of adaptive immune response. For this reason, the structural determinants of MHC-II function have been of great interest for the past 30 years, resulting in a robust structural understanding of the extracellular regions of the complex. However, the membrane-localized regions have also been strongly implicated in protein-protein and protein-lipid interactions that facilitate Class II assembly, transport and function, and it is these regions that are the focus of this review. Here we describe studies that reveal the strong and selective interactions between the transmembrane domains of the MHC α, and invariant chains which, when altered, have broad reaching impacts on antigen presentation and Class II function. We also summarize work that clearly demonstrates the link between membrane lipid composition (particularly the presence of cholesterol) and MHC-II conformation, subsequent peptide binding, and downstream T-cell activation. We have integrated these studies into a comprehensive view of Class II transmembrane domain biology. [Abstract copyright: Copyright © 2018. Published by Elsevier Inc.

    Membrane repair against H. pylori promotes cancer cell proliferation

    Get PDF
    Membrane repair is a universal response against physical and biological insults and enables cell survival. Helicobacter pylori is one of the most common human pathogens and the first formally recognized bacterial carcinogen associated with gastric cancer. However, little is known about host membrane repair in the context of H. pylori infection. Here we show that H. pylori disrupts the host plasma membrane and induces Ca2+ influx, which triggers the translocation of annexin family members A1 and A4 to the plasma membrane. This in turn activates a membrane repair response through the recruitment of lysosomal membranes and the induction of downstream signaling transduction pathways that promote cell survival and proliferation. Based on our data, we propose a new model by which H. pylori infection activates annexin A1 and A4 for membrane repair and how annexin A4 over-expression induced signaling promotes cell proliferation. Continual activation of this membrane repair response signaling cascade may cause abnormal cellular states leading to carcinogenesis. This study links H. pylori infection to membrane repair, providing insight into potential mechanisms of carcinogenesis resulting from membrane damage

    A saposin-lipoprotein nanoparticle system for membrane proteins.

    Get PDF
    A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state
    corecore