456,563 research outputs found

    Mechanical chest-compression devices: current and future roles

    Get PDF
    Purpose of review: It is recognised that the quality of CPR is an important predictor of outcome from cardiac arrest yet studies consistently demonstrate that the quality of CPR performed in real life is frequently sub-optimal. Mechanical chest compression devices provide an alternative to manual CPR. This review will consider the evidence and current indications for the use of these devices. Recent findings: Physiological and animal data suggest that mechanical chest compression devices are more effective than manual CPR. However there is no high quality evidence showing improved outcomes in humans. There are specific circumstances where it may not be possible to perform manual CPR effectively e.g. during ambulance transport to hospital, en-route to and during cardiac catheterisation, prior to organ donation and during diagnostic imaging where using these devices may be advantageous. Summary: There is insufficient evidence to recommend the routine use of mechanical chest compression devices. There may be specific circumstances when CPR is difficult or impossible where mechanical devices may play an important role in maintaining circulation. There is an urgent need for definitive clinical and cost effectiveness trials to confirm or refute the place of mechanical chest compression devices during resuscitation

    Compression Stress Effect on Dislocations Movement and Crack propagation in Cubic Crystal

    Get PDF
    Fracture material is seriously problem in daily life, and it has connection with mechanical properties itself. The mechanical properties is belief depend on dislocation movement and crack propagation in the crystal. Information about this is very important to characterize the material. In FCC crystal structure the competition between crack propagation and dislocation wake is very interesting, in a ductile material like copper (Cu) dislocation can be seen in room temperature, but in a brittle material like Si only cracks can be seen observed. Different techniques were applied to material to study the mechanical properties, in this study we did compression test in one direction. Combination of simulation and experimental on cubic material are reported in this paper. We found that the deflection of crack direction in Si caused by vacancy of lattice,while compression stress on Cu cause the atoms displacement in one direction. Some evidence of dislocation wake in Si crystal under compression stress at high temperature will reported

    Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression

    Get PDF
    Entangled fibrous materials have been manufactured from different fibers: metallic fibers, glass fibers, and carbon fibers. Specimens have been produced with and without cross links between fibers. Cross-links have been achieved using epoxy spraying. The scope of this article is to analyze the mechanical behavior of these materials and to compare it with available models. The first part of this article deals with entangled fibrous materials without crosslink between fibers. Compression tests are detailed and test reproducibility is checked. In the second part, compression tests were performed on materials manufactured with cross-linked fibers. The specific mechanical behavior obtained is discussed

    Tensile and compressive test results for metal matrix composites

    Get PDF
    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented

    Hydrostatic compression on polypropylene foam

    Get PDF
    Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to characterise the foam response to three-dimensional stress states. A new experimental apparatus for the study of the foam behaviour under a state of hydrostatic stress is presented. A flywheel was modified to carry out compression tests at high strain rates, and a hydrostatic chamber designed to obtain the variation of stress with volumetric strain, as a function of density and deformation rate. High speed images of the sample deformation under pressure were analysed by image processing. Hydrostatic compression tests were carried out, on polypropylene foams, both quasi statically and at high strain rates. The stress–volumetric strain response of the foam was determined for samples of foam of density from 35 to 120 kg/m3, loaded at two strain rates. The foam response under hydrostatic compression shows a non-linear elastic stage, followed by a plastic plateau and densification. These were characterised by a compressibility modulus (the slope of the initial stage), a yield stress and a tangent modulus. The foam was transversely isotropic under hydrostatic compression

    Orientation-dependent deformation mechanisms of bcc niobium nanoparticles

    Full text link
    Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyze the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [110] compression, while it obeys the Hertzian contact model in [111] and [001] compressions. In plastic deformation regime, full dislocation gliding is dominated in [110] compression, while deformation twinning is prominent in [111] compression, and these two mechanisms coexist in [001] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviors of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.Comment: 21 pages, 11 figure

    A statistical-mechanical view on source coding: physical compression and data compression

    Full text link
    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical mechanical behavior of a certain model of a chain of connected particles (e.g., a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative this function. Beyond the fact that this analogy may be interesting on its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also, an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics.Comment: 17 pages, 2 figures; submitted to the Journal of Statistical Mechanics: Theory and Experimen

    Polygons vs. clumps of discs: a numerical study of the influence of grain shape on the mechanical behaviour of granular materials

    Full text link
    We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5,000 grains made from either 3 overlapping discs (clumps - grains with concavities) or six-edged polygons (convex grains). These two grain type have similar external envelopes, which is a function of a geometrical parameter α\alpha. In this paper, the numerical procedure applied is briefly presented followed by the description of the granular model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic loading are made. The mechanical response of our numerical granular samples is studied in the framework of the classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic responses of dense and loose samples with various grain shapes shows that when α\alpha is considered a concavity parameter, it is therefore a relevant variable for increasing mechanical performances of dense samples. When α\alpha is considered an envelope deviation from perfect sphericity, it can control mechanical performances for large strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense samples made of clumps always exhibit thin reflecting shear bands. This paper was written as part of a CEGEO research project www.granuloscience.comComment: This version of the paper doesn't include figures. Visit the journal web site to download the final version of the paper with the figure
    corecore