58,814 research outputs found
Near critical catalyst reactant branching processes with controlled immigration
Near critical catalyst-reactant branching processes with controlled
immigration are studied. The reactant population evolves according to a
branching process whose branching rate is proportional to the total mass of the
catalyst. The bulk catalyst evolution is that of a classical continuous time
branching process; in addition there is a specific form of immigration.
Immigration takes place exactly when the catalyst population falls below a
certain threshold, in which case the population is instantaneously replenished
to the threshold. Such models are motivated by problems in chemical kinetics
where one wants to keep the level of a catalyst above a certain threshold in
order to maintain a desired level of reaction activity. A diffusion limit
theorem for the scaled processes is presented, in which the catalyst limit is
described through a reflected diffusion, while the reactant limit is a
diffusion with coefficients that are functions of both the reactant and the
catalyst. Stochastic averaging principles under fast catalyst dynamics are
established. In the case where the catalyst evolves "much faster" than the
reactant, a scaling limit, in which the reactant is described through a one
dimensional SDE with coefficients depending on the invariant distribution of
the reflected diffusion, is obtained. Proofs rely on constrained martingale
problem characterizations, Lyapunov function constructions, moment estimates
that are uniform in time and the scaling parameter and occupation measure
techniques.Comment: Published in at http://dx.doi.org/10.1214/12-AAP894 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Intermittency on catalysts
The present paper provides an overview of results obtained in four recent
papers by the authors. These papers address the problem of intermittency for
the Parabolic Anderson Model in a \emph{time-dependent random medium},
describing the evolution of a ``reactant'' in the presence of a ``catalyst''.
Three examples of catalysts are considered: (1) independent simple random
walks; (2) symmetric exclusion process; (3) symmetric voter model. The focus is
on the annealed Lyapunov exponents, i.e., the exponential growth rates of the
successive moments of the reactant. It turns out that these exponents exhibit
an interesting dependence on the dimension and on the diffusion constant.Comment: 11 pages, invited paper to appear in a Festschrift in honour of
Heinrich von Weizs\"acker, on the occasion of his 60th birthday, to be
published by Cambridge University Pres
Genealogy of catalytic branching models
We consider catalytic branching populations. They consist of a catalyst
population evolving according to a critical binary branching process in
continuous time with a constant branching rate and a reactant population with a
branching rate proportional to the number of catalyst individuals alive. The
reactant forms a process in random medium. We describe asymptotically the
genealogy of catalytic branching populations coded as the induced forest of
-trees using the many individuals--rapid branching continuum limit.
The limiting continuum genealogical forests are then studied in detail from
both the quenched and annealed points of view. The result is obtained by
constructing a contour process and analyzing the appropriately rescaled version
and its limit. The genealogy of the limiting forest is described by a point
process. We compare geometric properties and statistics of the reactant limit
forest with those of the "classical" forest.Comment: Published in at http://dx.doi.org/10.1214/08-AAP574 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Reaction-diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor
We confront, quantitatively, the theoretical description of the
reaction-diffusion of a second order reaction to experiment. The reaction at
work is \ca/CaGreen, and the reactor is a T-shaped microchannel, 10 m
deep, 200 m wide, and 2 cm long. The experimental measurements are
compared with the two-dimensional numerical simulation of the
reaction-diffusion equations. We find good agreement between theory and
experiment. From this study, one may propose a method of measurement of various
quantities, such as the kinetic rate of the reaction, in conditions yet
inaccessible to conventional methods
Simulation of chemical reaction dynamics on an NMR quantum computer
Quantum simulation can beat current classical computers with minimally a few
tens of qubits and will likely become the first practical use of a quantum
computer. One promising application of quantum simulation is to attack
challenging quantum chemistry problems. Here we report an experimental
demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is
already able to simulate the dynamics of a prototype chemical reaction. The
experimental results agree well with classical simulations. We conclude that
the quantum simulation of chemical reaction dynamics not computable on current
classical computers is feasible in the near future.Comment: 37 pages, 7 figure
Reentrant phase diagram and pH effects in cross-linked gelatin gels
Experimental results have shown that the kinetics of bond formation in
chemical crosslinking of gelatin solutions is strongly affected not only by
gelatin and reactant concentrations but also by the solution pH. We present an
extended numerical investigation of the phase diagram and of the kinetics of
bond formation as a function of the pH, via Monte Carlo simulations of a
lattice model for gelatin chains and reactant agent in solution. We find a
reentrant phase diagram, namely gelation can be hindered either by loop
formation, at low reactant concentrations, or by saturation of active sites of
the chains via formation of single bonds with crosslinkers, at high reactant
concentrations. The ratio of the characteristic times for the formation of the
first and of the second bond between the crosslinker and an active site of a
chain is found to depend on the reactant reactivity, in good agreement with
experimental data.Comment: 8 pages, 8 figure
Isomerization dynamics of a buckled nanobeam
We analyze the dynamics of a model of a nanobeam under compression. The model
is a two mode truncation of the Euler-Bernoulli beam equation subject to
compressive stress. We consider parameter regimes where the first mode is
unstable and the second mode can be either stable or unstable, and the
remaining modes (neglected) are always stable. Material parameters used
correspond to silicon. The two mode model Hamiltonian is the sum of a
(diagonal) kinetic energy term and a potential energy term. The form of the
potential energy function suggests an analogy with isomerisation reactions in
chemistry. We therefore study the dynamics of the buckled beam using the
conceptual framework established for the theory of isomerisation reactions.
When the second mode is stable the potential energy surface has an index one
saddle and when the second mode is unstable the potential energy surface has an
index two saddle and two index one saddles. Symmetry of the system allows us to
construct a phase space dividing surface between the two "isomers" (buckled
states). The energy range is sufficiently wide that we can treat the effects of
the index one and index two saddles in a unified fashion. We have computed
reactive fluxes, mean gap times and reactant phase space volumes for three
stress values at several different energies. In all cases the phase space
volume swept out by isomerizing trajectories is considerably less than the
reactant density of states, proving that the dynamics is highly nonergodic. The
associated gap time distributions consist of one or more `pulses' of
trajectories. Computation of the reactive flux correlation function shows no
sign of a plateau region; rather, the flux exhibits oscillatory decay,
indicating that, for the 2-mode model in the physical regime considered, a rate
constant for isomerization does not exist.Comment: 42 pages, 6 figure
An Analytical Construction of the SRB Measures for Baker-type Maps
For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle
and Bowen showed the existence of an invariant measure (SRB measure) weakly
attracting the temporal average of any initial distribution that is absolutely
continuous with respect to the Lebesgue measure. Recently, the SRB measures
were found to be related to the nonequilibrium stationary state distribution
functions for thermostated or open systems. Inspite of the importance of these
SRB measures, it is difficult to handle them analytically because they are
often singular functions. In this article, for three kinds of Baker-type maps,
the SRB measures are analytically constructed with the aid of a functional
equation, which was proposed by de Rham in order to deal with a class of
singular functions. We first briefly review the properties of singular
functions including those of de Rham. Then, the Baker-type maps are described,
one of which is non-conservative but time reversible, the second has a
Cantor-like invariant set, and the third is a model of a simple chemical
reaction . For the second example, the
cases with and without escape are considered. For the last example, we consider
the reaction processes in a closed system and in an open system under a flux
boundary condition. In all cases, we show that the evolution equation of the
distribution functions partially integrated over the unstable direction is very
similar to de Rham's functional equation and, employing this analogy, we
explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO
Semiclassical transmission across transition states
It is shown that the probability of quantum-mechanical transmission across a
phase space bottleneck can be compactly approximated using an operator derived
from a complex Poincar\'e return map. This result uniformly incorporates
tunnelling effects with classically-allowed transmission and generalises a
result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit
- …
