346,732 research outputs found

    Pengembangan Modul Matematika Berilustrasi Komik Pada Materi Skala Dan Perbandingan Kelas VII Smp/mts

    Full text link
    This study aims at: 1) investigating elegibility of comic-illustrated mathematics module on the materials of scale and comparison for grade VII students of SMP/MTs, 2) investigating the effectiveness of comic-illustrated mathematics module on the materials of scale and comparison for grade VII students of SMP/MTs. This study was a research and development (R & D) in mathematics learning at SMP/MTs. The applied development model was a development model postulated by Borg and Gall modified by Sukmadinata, which consists of three stages, including: 1) preliminary research, 2) development, and 3) field testing, each of which contains several steps. The product validation process was carried out by material experts, media experts, and respondents. The effectiveness testing for the module carried out in MTs Negeri Ngawi. The data collecting instrument used was the mathematics performance test. The content validity was measured by validators. The reliability test for measuring the test instrument applied KR-20 formula and the discriminatory power used product-moment correlation formula by Karl Pearson. The balance test was carried out by using t-test. The prerequisite tests covered normality test using Lilliefors testing method and homogeneity test using Barttlet method. The experimental design for this research was randomized post-test-only control group design. On the basis of the research findings and development, the research is concluded: 1) the comic-illustrated mathematics module was feasible to be used in learning process, the comic-illustrated mathematics module is considered feasible when the evaluation result from retriever is “good”, 2) the average students learning achievement in experiment class is better than that in control class, this conclusion is in accordance with the hypotheses proposed, namely learning with comic-illustrated mathematics module on the materials of scale and comparison for grade VII of SMP/MTs is more effective than direct learning without comic-illustrated mathematics module

    Space Station Freedom Solar Array design development

    Get PDF
    The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives

    Molecular Dynamics Simulations of Poly(dimethylsiloxane) Elasticity

    Get PDF
    Cross-linked polymers have unique and advantageous properties due to the infinite elastic chains. Poly(dimethylsiloxane) (PDMS) belongs into a group of non-toxic, relatively inert and highly elastic polymers (elastomers). In addition, this material is easy to fabricate and has favorable optical and mechanical properties, and it is widely used in fiber optics. Based on testing three different simulation techniques for getting closer insight into the structural background of physical properties of PDMS resin, the molecular dynamics method is chosen. The main topic of this paper is an analysis of relationship between the PDMS cross-linking level and its elasticity. The calculations are performed within the Materials Studio (MS) simulation environment (Biovia Software Inc. USA) using molecular dynamics (MD) theory implemented in MS Forcite Plus module. The obtained results are compared with the newest experimental data available for real PDMS materials

    Post-Flight Test Results of Acousto-Optic Modulator Devices Subjected to Space Exposure

    Get PDF
    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in a space environment for more than one and a half years included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the results of performance testing of a laser diode module sent by NASA Langley Research Center on MISSE 7 mission will be discussed. This paper will present the comparison of pre-flight and post-flight performance of two different COTS acousto-optic modulator (AOM) devices. Post-flight measurements indicate that these two devices did not undergo any significant performance degradation

    Outdoor performance testing of thin-film devices

    Get PDF
    The Advanced Systems Research Group supports the photovoltaic advanced R&D (PV AR&D) project by providing outdoor (global) testing of PV cells, submodules, modules, and arrays. The group also provides in house engineering and analysis to identify and determine how technical issues such as cell/module/system adaptations, long term stability, reliability, economics, materials availability, safety, and environmental impacts affect the development and ultimate use of advanced PV thin film, innovative cell, and material technologies. A major thrust of the research effort is to develop and utilize instrumentation and procedures for monitoring and analyzing PV cells and submodules including outdoor performance and stability testing and life cycle accelerated stress testing. To accomplish the above, the solar energy research institute (SERI) outdoor PV test facility was established in 1982. The group has designed testing systems and analysis procedures for, and has tested, numerous amorphous silicon thin film submodules provided by SERI subcontractors and has performed long term outdoor stability tests on CdS/CuIr Se sub 2 and hydrogen passivated silicon solar cells. A significant contribution from this facility over the past year was the testing of large area amorphous silicon submodules

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VII: Module encapsulation

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20-year (later increased to 30-year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the FSA Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized in this report include the development of low-cost ultraviolet protection techniques, stable low-cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long-term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that will meet the FSA cost and performance goals. Thirty-year module life expectancies are anticipated based on accelerated stress testing results and on extrapolation of real-time field exposures in excess of 9 years

    Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    Get PDF
    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation

    Dendritic web-type solar cell mini-modules

    Get PDF
    Twenty-five minimodules composed of dendritic web solar cells with nominal glass size of 12 by 40 cm were provided for study. The modules were identical with respect to design, materials, and manufacturing and assembly processes to full scale modules. The modules were also electrically functional. These minimodules were fabricated to provide test vehicle for environmental testing and to assess reliability of process and design procedures. The module design and performance are outlined
    corecore