4,154,455 research outputs found

    Low Temperature Opacities

    Full text link
    Previous computations of low temperature Rosseland and Planck mean opacities from Alexander & Ferguson (1994) are updated and expanded. The new computations include a more complete equation of state with more grain species and updated optical constants. Grains are now explicitly included in thermal equilibrium in the equation of state calculation, which allows for a much wider range of grain compositions to be accurately included than was previously the case. The inclusion of high temperature condensates such as Al2_2O3_3 and CaTiO3_3 significantly affects the total opacity over a narrow range of temperatures before the appearance of the first silicate grains. The new opacity tables are tabulated for temperatures ranging from 30000 K to 500 K with gas densities from 104^{-4} g cm3^{-3} to 1019^{-19} g cm3^{-3}. Comparisons with previous Rosseland mean opacity calculations are discussed. At high temperatures, the agreement with OPAL and Opacity Project is quite good. Comparisons at lower temperatures are more divergent as a result of differences in molecular and grain physics included in different calculations. The computation of Planck mean opacities performed with the opacity sampling method are shown to require a very large number of opacity sampling wavelength points; previously published results obtained with fewer wavelength points are shown to be significantly in error. Methods for requesting or obtaining the new tables are provided.Comment: 39 pages with 12 figures. To be published in ApJ, April 200

    Low temperature stimulates spatial molecular reprogramming of the Arabidopsis seed germination programme

    Get PDF
    The timing of the germination of seeds is highly responsive to inputs from the environment. Temperature plays a key role in the control of germination, with low temperatures acting to stimulate this developmental transition in many species. In Arabidopsis, extensive gene expression changes have been reported at the whole seed level in response to cold, while much less is known about their spatial distribution across the diverse cell types of the embryo. In this study we examined the spatiotemporal patterns of promoter activity and protein abundance for key gibberellic acid (GA) and abscisic acid (ABA) factors which regulate the decision to germinate both during a time course of germination and in response to cold. Low temperature stimulated the spatial relocalization of these factors to the vasculature. The response of these seeds to dormancy-breaking stratification treatments therefore stimulates the distribution of both positive (GA) and negatively acting (ABA) components to this same cell type. This altered spatial pattern persisted following the transfer of seeds to 22°C, as well as after their rehydration, indicating that this alteration is persistent. These observations suggest that the vasculature plays a role in the low temperature-mediated stimulation of germination in this species, while novel cell types are recruited to promote germination in response to stratification

    Low temperature fluid blender

    Get PDF
    Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired

    Low-temperature antihydrogen-atom scattering

    Full text link
    A simple method to include the strong force in atom-antiatom scattering is presented. It is based on the strong-force scatteringn length between the nucleon and antinucleon. Using this method elastic and annihilation cross sections are calculated for hydrogen-antihydrogen and helium-antihydrogen scattering. The results are compared to first-order perturbation theory using a pseudo potential. The pseudo-potential approach works fairly well for hydrogen-antihydrogen scattering, but fails for helium-antihydrogen scattering where strong-force effects are more prominent.Comment: 9 pages, 2 figures, to be published in Nuclear Instruments and Methods

    Low temperature relations in QCD

    Full text link
    In this talk I discuss the low temperature relations for the trace of the energy-momentum tensor in QCD with two and three quarks. It is shown that the temperature derivatives of the anomalous and normal (quark massive term) contributions to the trace of the energy-momentum tensor in QCD are equal to each other in the low temperature region. Leading corrections connected with ππ\pi\pi-interactions and thermal excitations of KK and η\eta mesons are calculated.Comment: 10 pages, LaTeX2e. Talk given at 12th International Seminar on High-Energy Physics (QUARKS 2002), Novgorod, Russia, 1-7 Jun 200

    Low temperature ellipsometry of NaV2O5

    Full text link
    The dielectric function of alpha'NaV2O5 was measured with electric field along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak upon increasing temperature with an activation energy of about 25meV, indicating that a finite fraction of the rungs becomes occupied with two electrons while others are emptied as temperature increases. No appreciable shifts of peaks were found s in the valence state of individual V atoms at the phase transition is very small. A remarkable inflection of this temperature dependence at the phase transition at 34 K indicates that charge ordering is associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In press in Physical Review B. REVTeX, 4 pages with 4 postscript figure

    Low-temperature saw damage gettering to improve minority carrier lifetime in multicrystalline silicon

    Get PDF
    The minority carrier lifetime in multicrystalline silicon − a material used in the majority of today's manufactured solar cells − is limited by defects within the material, including metallic impurities which are relatively mobile at low temperatures (≤700 °C). Addition of an optimised thermal process which can facilitate impurity diffusion to the saw damage at the wafer surfaces can result in permanent removal of the impurities when the saw damage is etched away. We demonstrate that this saw damage gettering is effective at 500 to 700 °C and, when combined with subsequent low-temperature processing, lifetimes are improved by a factor of more than four relative to the as-grown state. The simple method has the potential to be a low thermal budget process for the improvement of low-lifetime “red zone” wafers

    Low-temperature bonding of temperature-resistant electronic connections

    Get PDF
    Bonding of flat metal surfaces utilizes low temperature melting intermediate material, pulse heating, and pressure application to produce strong, electrically conductive bond resistant to melting at temperatures well above melting point of intermediate material. Little or no intermediate material remains at the interface

    Low toxicity high temperature PMR polyimide

    Get PDF
    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C
    corecore