169,506 research outputs found
Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience
In this paper are presented the results of the investigation on optimal process operational conditions of thermophilic dark fermentation and anaerobic digestion of food waste, testing a long term run, applying an organic loading rate of 16.3 kgTVS/m3d in the first phase and 4.8 kgTVS/m3d in the second phase. The hydraulic retention times were maintained at 3.3 days and 12.6 days, respectively, for the first and second phase. Recirculation of anaerobic digested sludge, after a mild solid separation, was applied to the dark fermentation reactor in order to control the pH in the optimal hydrogen production range of 5-6. It was confirmed the possibility to obtain a stable hydrogen production, without using external chemicals for pH control, in a long term test, with a
specific hydrogen production of 66.7 l per kg of total volatile solid (TVS) fed and a specific biogas production in the second phase of 0.72 m3 per kgTVS fed; the produced biogas presented a typical composition with a stable presence of hydrogen and methane in the biogas mixture around 6 and 58%, respectively, carbon dioxide being the rest
Zinc accumulation and utilisation by wine yeasts
The present study has focused on the accumulation of zinc by wine yeast strains of Saccharomyces cerevisiae during fermentation of both grape juice and chemically defined medium with different carbohydrates and at varying levels of zinc. The results have shown that zinc accumulation by wine yeast was very rapid with all zinc being removed from the medium by yeast cells within the first two hours. Zinc uptake was stimulated by the presence of sucrose. Zinc affected fermentation progress at defined levels, with optimal concentrations at 1.5–2.5 ppm, depending on yeast strain and zinc bioavailability. The bioavailability of metal ions in grape must and the roles of metals in wine yeast physiology are aspects poorly understood by enologists. In brewing, it has long been recognized that malt wort may be zinc deficient and brewers often carry out zinc supplementations to avoid sluggish and incomplete fermentations. In winemaking, zinc levels in grape musts may be compromised depending on the bioavailability of zinc ions in vineyard soils as well as treatments with fertilizers and fungicides during grape growing. As a consequence, sub-optimal zinc levels in grape musts may negatively influence the fermentative performance of yeasts. We believe that optimization of metal ion bioavailability will improve yeast fermentation performance in industrial processes and this study addresses some issues relating to zinc in enology
The effects of pH-stat long-term lactic acid bacterial activity prior to curd formation on the development of cheese structure in a fat free model cheese : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) in Food Technology at Massey University, Manawatu, New Zealand
Most Figures from published sources have been removed for copyright reasons but may be accessed via their source listed in the References. Figures 2-1, 2-32, 2-33 do not have an accessible source and therefore remain. Corresponding Figures from journal sources are as follows: Fig 2.4 (=Dalgleish, 2011 Fig 5; Fig 2.18 (=Dalgleish & Corredig, 2012 Fig 4 a & b); Fig 2.20 (=Bech, 1993 Fig 4); Fig 2.21 (=McSweeney, 2004 Fig 5); Fig 2.22 (=Sousa et al., 2001 Fig 1); Fig 2.24 (=Tunick, 2000 Fig 3); Fig 2.26 (=Tunick, 2000 Fig 1); 2.28 (Waungana et al., 1998 Fig 2); Fig 2.29 (=Guinee et al., 1998 Fig 1); Fig 5.11 (=Piraino et al., 2007 Fig 1 e & f & b); & Fig 5.14 (=Lane & Fox, 1997 Fig 6).Cheese ripening is an important step in most cheese production practices during which a tasteless fresh cheese is converted to a tasty and flavourful product with specific textural attributes. However, the complexity of its composition (pH, solubilisation of calcium from the colloidal casein proteins, salt concentration, acid production rate, indigenous and added enzymes, residual activity of the enzymes etc.) coupled with the length of time associated with manufacturing which in some cases can be in excess of two years has made it a complicated area of study. The influences of the composition and process contributors are confounded and it is impossible to connect the impact of one particular parameter on cheese making steps and quality attributes. pH has proven to be an important influential factor to influence the extent of effects of other parameters with significant influence on other ruling parameters in milk, curd and cheese. Proteolysis during ripening is the most important physicochemical pathway to define the quality of cheese. One of the major factors governing cheese ripening reactions is the starter bacteria.
This study has aimed to characterise the effects of starter bacteria activity on curd formation and resultant cheese textural attributes of the long fermented cheesemilk. By developing a pH-stat system, long fermentations carried out to assess the proteolytic activity of selected starter lactic acid bacteria (LAB) on a milk based medium before rennet addition. It was attempted to assess the degree of hydrolysis of cheesemilk through extended bacterial fermentation, conducted under pH-stat conditions, prior to curd formation. The effects of the bacterial activity on casein proteins during pH-stat long term (PSLT) fermentations were evaluated by assessing proteolysis index from pH4.6 soluble nitrogen as a fraction of total nitrogen (pH4.6SN/TN). The proteolysis of proteins during PSLT was further assessed by doing reverse-phase high performance liquid chromatography (RP-HPLC) on 70%Ethanol soluble (70%EtOHS) and insoluble (70%EtOHI) fractions of pH4.6 soluble fraction of the samples. The effects of PLST fermentation on formation of small-size peptides were assessed by quadrupole time-of-flight mass spectrometry (Q-ToF MS) on the 70%EtOHS fraction. The effect of PLST fermentation on ‘depth of proteolysis’ during cheese ripening were assessed by analysing the quantity of free amino acid (FAA) formed in resultant cheese after 12 months storage at 4°C. The impact of PLST fermentation on gel formation attributes were assessed by doing dynamic law amplitude oscillatory rheometry (DLAOR). The consequent effects on resultant cheese texture were evaluated using texture profile analysis (TPA). The impact of PSLT on microstructure were assessed by confocal laser scanning microscopy (CLSM).
The results provided evidence for the adequacy of developed fermentation to conduct PSLT with reproducible results. High correlation between the parameters of the PSLT fermentation system were obtained. The proteolysis index measured from the PSLT fermentations with different durations showed evidences on the significance of LAB proteolytic system on cheese milk prior to curd formation. The proteolysis index for the longest fermentation prior to curd formation was 5% which was comparable to day one cheese proteolysis index, in presence of rennet, in most cheeses varieties. Peptide profiling of the 70%EtOHS and 70%EtOHI sub-fractions of pH4.6S showed significant (p<0.05) effects arising from PSLT fermentations. Analysis of FAA of ripened cheese also showed a significant increase (p<0.05) in the samples with longer PSLT (20 times increase in total free amino acids compared to non-fermented treatment) fermentations. The differences in gelation behaviour of the sample and textural attributes of cheese and microstructure of final cheese were connected to the extent of proteolytic activity of LAB during PSLT fermentations. The hardness of cheese significantly (p<0.05) decreased (up to ~60%) by increasing fermentation duration over the studied timescale
Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane
Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37C. Overall solvent productivity of fermentation connected with continuous product removal by pervaporation was 2.34 g l(-1) h(-1). The supported ionic liquid membrane (SILM) was impregnated with 15 wt% of a novel ionic liquid (tetrapropylammonium tetracyano-borate) and 85 wt% of polydimethylsiloxane. Pervaporation, accomplished with the optimized SILM, led to stable and efficient removal of the solvents butan-1-ol and acetone out of a C. acetobutylicum culture. By pervaporation through SILM, we removed more butan-1-ol than C. acetobutylicum was able to produce. Therefore, we added an extra dose of butan-1-ol to run fermentation on limiting values where the bacteria would still be able to survive its lethal concentration (15.82 g/l). After pervaporation was switched off, the bacteria died from high concentration of butan-1-ol, which they produced
125th anniversary review: fuel alcohol: current production and future challenges
Global research and industrial development of liquid transportation biofuels are moving at a rapid pace. This is mainly due to the significant roles played by biofuels in decarbonising our future energy needs, since they act to mitigate the deleterious impacts of greenhouse gas emissions to the atmosphere that are contributors of climate change. Governmental obligations and international directives that mandate the blending of biofuels in petrol and diesel are also acting as great stimuli to this expanding industrial sector. Currently, the predominant liquid biofuel is bioethanol (fuel alcohol) and its worldwide production is dominated by maize-based and sugar cane-based processes in North and South America, respectively. In Europe, fuel alcohol production employs primarily wheat and sugar beet. Potable distilled spirit production and fuel alcohol processes share many similarities in terms of starch bioconversion, fermentation, distillation and co-product utilisation, but there are some key differences. For example, in certain bioethanol fermentations, it is now possible to yield consistently high ethanol concentrations of ~20% (v/v). Emerging fuel alcohol processes exploit lignocellulosic feedstocks and scientific and technological constraints involved in depolymerising these materials and efficiently fermenting the hydrolysate sugars are being overcome. These so-called secondgeneration fuel alcohol processes are much more environmentally and ethically acceptable compared with exploitation of starch and sugar resources, especially when considering utilisation of residual agricultural biomass and biowastes. This review covers both first and second-generation bioethanol processes with a focus on current challenges and future opportunities of lignocellulose-to-ethanol as this technology moves from demonstration pilot-plants to full-scale industrial facilities
Electro-extractive fermentation for efficient biohydrogen production
Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50–70% maintained over continuous 30-day experiments. Contrary to\ud
previous reports, E. coli produced H2 after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy
Dry anaerobic digestion of organic residues on-farm - a feasibility study
Objectives
The feasibility study shall answer the following questions: Are there economical and ecological advantages of on-farm dry digestion biogas plants? How the construction and operation parameters of a dry digestion biogas plant influence environment, profit, and sustainability of on-farm biogas production?
The aim of the feasibility study is to provide facts and figures for decision makers in Finland to support the development of the economically and environmentally most promising biogas technology on-farm. The results may encourage on-farm biogas plant manufacturers to develop and market dry anaerobic digestion technology as a complementary technology. This technology may be a competitive alternative for farms using a dry manure chain or even for stockless farms.
Results
Up to now farm scale dry digestion technology does not offer competitive advantages in biogas production compared to slurry based technology as far as only energy production is concerned. However, the results give an over-view of existing technical solutions of farm-scale dry digestion plants. The results also show that the ideal technical solution is not invented yet. This may be a challenge for farmers and entrepreneurs interested in planning and developing future dry digestion biogas plants on-farm. Development of new dry digestion prototype plants requires appropriate compensation for environmental benefits like closed energy and nutrient circles to improve the economy of biogas production. The prototype in Järna meets the objectives of the project since beside energy a new compost product from the solid fraction was generated. On the other hand the two-phase process consumes much energy and the investment costs are high (>2000 € m-3 reactor volume).
Dry digestion on-farm offers the following advantages: Good process stability and reliability, no problems like foam or sedimentation, cheap modules for batch reactors, less reactor capacity, reduced transport costs due to reduced mass transfer in respect of the produced biogas quantity per mass unit, compost of solid digestion residues suitable as fertiliser also outside the farm gate, use of on-farm available technology for filling and discharging the reactor, less process energy for heating because of reduced reactor size, no process energy for stirring, reduced odour emissions, reduced nutrient run off during storage and distribution of residues because there is no liquid mass transfer, suitable for farms using deep litter systems.
These advantages are compensated by following constraints: Up to 50% of digestion residues are needed as inoculation material (cattle manure does not need inoculation) requiring more reactor capacity and mixing facilities. Retention time of dry digestion is up to three times longer compared to wet digestion requiring more reactor capacity and more process energy, filling and discharging batch reactors is time and energy consuming. We conclude that only farm specific conditions may be in favour for dry digestion technology.
Generally, four factors decide about the economy of biogas production on-farm: Income from waste disposal services, compensation for reduction of greenhouse gas emission, compensation for energy production and - most important for sustainable agriculture - nutrient recycling benefits.
Evaluation of the results
We did not find any refereed scientific paper that includes a documentation of an on-farm dry digestion biogas plant. It seems that we tried first. We also could not find any results about the biogas potential of oat husks, so we may have found these results first.
Farm scale production of anaerobically treated solid manure for composting is new. Dry fermentation biogas plants offer the possibility to design solid manure compost by variation of fermentation process parameters.
From different scientific publication databases we found about 10 000 references concerning biogas research during the past 10 years. Less than ten are dealing with biogas reactors for non-liquid substrates on-farm. Recent research mainly concentrates on basic research, biogas process research for communal waste, large-scale biogas plants, and research on laboratory level. This mirrors the fact, that production of research papers is rather financed than product development on site. Our conclusion is that it seems worldwide to be very difficult or even impossible to find financial support for on site research, especially for on-farm prototype biogas reactors. We suppose the following reasons for this fact: biogas plant research requires proficiency in many different scientific disciplines, lack of co-operation between engineering and life sciences, high development costs to transfer basic research results into practical technical solutions, low interest of researchers because on site and on-farm research enjoys low appreciation in terms of scientific credits, portability of farm specific design and process solutions is difficult. Our conclusion is that on site and on-farm research has to be supported by funding agencies if integration of biogas and bio energy into the farm organism is considered as an important target within the agricultural policy framework.
Future research on both dry fermentation technique and biogas yield of solid organic residues may close present knowledge gaps. Prototype research may offer competitive alternatives to wet fermentation for farms using a solid manure chain and/or energy crops for biogas production.
To encourage farmers and entrepreneurs to foster the development of dry fermentation technology support in terms of education and advisory services is also necessary
Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice
Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved.
We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8±3.0 vs. 33.6±1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption
- …
