175 research outputs found

    Mining of uncertain Web log sequences with access history probabilities

    Get PDF
    An uncertain data sequence is a sequence of data that exist with some level of doubt or probability. Each data item in the uncertain sequence is represented with a label and probability values, referred to as existential probability, ranging from 0 to 1. Existing algorithms are either unsuitable or inefficient for discovering frequent sequences in uncertain data. This thesis presents mining of uncertain Web sequences with a method that combines access history probabilities from several Web log sessions with features of the PLWAP web sequential miner. The method is Uncertain Position Coded Pre-order Linked Web Access Pattern (U-PLWAP) algorithm for mining frequent sequential patterns in uncertain web logs. While PLWAP only considers a session of weblogs, U-PLWAP takes more sessions of weblogs from which existential probabilities are generated. Experiments show that U-PLWAP is at least 100% faster than U-apriori, and 33% faster than UF-growth. The UF-growth algorithm also fails to take into consideration the order of the items, thereby making U-PLWAP a richer algorithm in terms of the information its result contains

    LogLG: Weakly Supervised Log Anomaly Detection via Log-Event Graph Construction

    Full text link
    Fully supervised log anomaly detection methods suffer the heavy burden of annotating massive unlabeled log data. Recently, many semi-supervised methods have been proposed to reduce annotation costs with the help of parsed templates. However, these methods consider each keyword independently, which disregards the correlation between keywords and the contextual relationships among log sequences. In this paper, we propose a novel weakly supervised log anomaly detection framework, named LogLG, to explore the semantic connections among keywords from sequences. Specifically, we design an end-to-end iterative process, where the keywords of unlabeled logs are first extracted to construct a log-event graph. Then, we build a subgraph annotator to generate pseudo labels for unlabeled log sequences. To ameliorate the annotation quality, we adopt a self-supervised task to pre-train a subgraph annotator. After that, a detection model is trained with the generated pseudo labels. Conditioned on the classification results, we re-extract the keywords from the log sequences and update the log-event graph for the next iteration. Experiments on five benchmarks validate the effectiveness of LogLG for detecting anomalies on unlabeled log data and demonstrate that LogLG, as the state-of-the-art weakly supervised method, achieves significant performance improvements compared to existing methods.Comment: 12 page

    Adversarially Reweighted Sequence Anomaly Detection With Limited Log Data

    Get PDF
    In the realm of safeguarding digital systems, the ability to detect anomalies in log sequences is paramount, with applications spanning cybersecurity, network surveillance, and financial transaction monitoring. This thesis presents AdvSVDD, a sophisticated deep learning model designed for sequence anomaly detection. Built upon the foundation of Deep Support Vector Data Description (Deep SVDD), AdvSVDD stands out by incorporating Adversarial Reweighted Learning (ARL) to enhance its performance, particularly when confronted with limited training data. By leveraging the Deep SVDD technique to map normal log sequences into a hypersphere and harnessing the amplification effects of Adversarial Reweighted Learning, AdvSVDD demonstrates remarkable efficacy in anomaly detection. Empirical evaluations on the BlueGene/L (BG/L) and Thunderbird supercomputer datasets showcase AdvSVDD’s superiority over conventional machine learning and deep learning approaches, including the foundational Deep SVDD framework. Performance metrics such as Precision, Recall, F1-Score, ROC AUC, and PR AUC attest to its proficiency. Furthermore, the study emphasizes AdvSVDD’s effectiveness under constrained training data and offers valuable insights into the role of adversarial component has in the enhancement of anomaly detection

    LogGPT: Log Anomaly Detection via GPT

    Full text link
    Detecting system anomalies based on log data is important for ensuring the security and reliability of computer systems. Recently, deep learning models have been widely used for log anomaly detection. The core idea is to model the log sequences as natural language and adopt deep sequential models, such as LSTM or Transformer, to encode the normal patterns in log sequences via language modeling. However, there is a gap between language modeling and anomaly detection as the objective of training a sequential model via a language modeling loss is not directly related to anomaly detection. To fill up the gap, we propose LogGPT, a novel framework that employs GPT for log anomaly detection. LogGPT is first trained to predict the next log entry based on the preceding sequence. To further enhance the performance of LogGPT, we propose a novel reinforcement learning strategy to finetune the model specifically for the log anomaly detection task. The experimental results on three datasets show that LogGPT significantly outperforms existing state-of-the-art approaches

    CSCLog: A Component Subsequence Correlation-Aware Log Anomaly Detection Method

    Full text link
    Anomaly detection based on system logs plays an important role in intelligent operations, which is a challenging task due to the extremely complex log patterns. Existing methods detect anomalies by capturing the sequential dependencies in log sequences, which ignore the interactions of subsequences. To this end, we propose CSCLog, a Component Subsequence Correlation-Aware Log anomaly detection method, which not only captures the sequential dependencies in subsequences, but also models the implicit correlations of subsequences. Specifically, subsequences are extracted from log sequences based on components and the sequential dependencies in subsequences are captured by Long Short-Term Memory Networks (LSTMs). An implicit correlation encoder is introduced to model the implicit correlations of subsequences adaptively. In addition, Graph Convolution Networks (GCNs) are employed to accomplish the information interactions of subsequences. Finally, attention mechanisms are exploited to fuse the embeddings of all subsequences. Extensive experiments on four publicly available log datasets demonstrate the effectiveness of CSCLog, outperforming the best baseline by an average of 7.41% in Macro F1-Measure.Comment: submitted to TKDD, 18 pages and 7 figure

    LogGD:Detecting Anomalies from System Logs by Graph Neural Networks

    Full text link
    Log analysis is one of the main techniques engineers use to troubleshoot faults of large-scale software systems. During the past decades, many log analysis approaches have been proposed to detect system anomalies reflected by logs. They usually take log event counts or sequential log events as inputs and utilize machine learning algorithms including deep learning models to detect system anomalies. These anomalies are often identified as violations of quantitative relational patterns or sequential patterns of log events in log sequences. However, existing methods fail to leverage the spatial structural relationships among log events, resulting in potential false alarms and unstable performance. In this study, we propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue by transforming log sequences into graphs. We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection. We evaluate the proposed method on four widely-used public log datasets. Experimental results show that LogGD can outperform state-of-the-art quantitative-based and sequence-based methods and achieve stable performance under different window size settings. The results confirm that LogGD is effective in log-based anomaly detection.Comment: 12 pages, 12 figure

    Log-based Anomaly Detection of CPS Using a Statistical Method

    Full text link
    Detecting anomalies of a cyber physical system (CPS), which is a complex system consisting of both physical and software parts, is important because a CPS often operates autonomously in an unpredictable environment. However, because of the ever-changing nature and lack of a precise model for a CPS, detecting anomalies is still a challenging task. To address this problem, we propose applying an outlier detection method to a CPS log. By using a log obtained from an actual aquarium management system, we evaluated the effectiveness of our proposed method by analyzing outliers that it detected. By investigating the outliers with the developer of the system, we confirmed that some outliers indicate actual faults in the system. For example, our method detected failures of mutual exclusion in the control system that were unknown to the developer. Our method also detected transient losses of functionalities and unexpected reboots. On the other hand, our method did not detect anomalies that were too many and similar. In addition, our method reported rare but unproblematic concurrent combinations of operations as anomalies. Thus, our approach is effective at finding anomalies, but there is still room for improvement

    AutoLog: A Log Sequence Synthesis Framework for Anomaly Detection

    Full text link
    The rapid progress of modern computing systems has led to a growing interest in informative run-time logs. Various log-based anomaly detection techniques have been proposed to ensure software reliability. However, their implementation in the industry has been limited due to the lack of high-quality public log resources as training datasets. While some log datasets are available for anomaly detection, they suffer from limitations in (1) comprehensiveness of log events; (2) scalability over diverse systems; and (3) flexibility of log utility. To address these limitations, we propose AutoLog, the first automated log generation methodology for anomaly detection. AutoLog uses program analysis to generate run-time log sequences without actually running the system. AutoLog starts with probing comprehensive logging statements associated with the call graphs of an application. Then, it constructs execution graphs for each method after pruning the call graphs to find log-related execution paths in a scalable manner. Finally, AutoLog propagates the anomaly label to each acquired execution path based on human knowledge. It generates flexible log sequences by walking along the log execution paths with controllable parameters. Experiments on 50 popular Java projects show that AutoLog acquires significantly more (9x-58x) log events than existing log datasets from the same system, and generates log messages much faster (15x) with a single machine than existing passive data collection approaches. We hope AutoLog can facilitate the benchmarking and adoption of automated log analysis techniques.Comment: The paper has been accepted by ASE 2023 (Research Track
    • …
    corecore