3,309,868 research outputs found

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Reusable Ionogel-based Photo-actuators in a Lab-on-a-disc

    Get PDF
    This paper describes the design, fabrication and performance of a reusable ionogel-based photo-actuator, in-situ photopolymerised into a lab-on-a-disc microfluidic device, for flow control. The ionogel provides an effective barrier to liquids during storage of reagents and spinning of the disc. A simple LED (white light) triggers actuation of the ionogel for selective and precise channel opening at a desired location and time. The mechanism of actuation is reversible, and regeneration of the actuator is possible with an acid chloride solution. In order to achieve regeneration, the Lab-on-a-Disc device was designed with a microchannel connected perpendicularly to the bottom of the ionogel actuator (regeneration channel). This configuration allows the acid solution to reach the actuator, independently from the main channel, which initiates ionogel swelling and main channel closure, and thereby enables reusability of the whole device.Economía y Competitividad), Spain. This project has receivedfunding from the European Union Seventh Framework Programme(FP7) for Research, Technological Development and Demonstrationunder grant agreement no. 604241. JS and FBL acknowledge fund-ing support from Gobierno de Espa˜na, Ministerio de Economía yCompetitividad, with Grant No. BIO2016-80417-P and personallyacknowledge to Marian M. De Pancorbo for letting them to use herlaboratory facilities at UPV/EHU. A.T., L.F., and D.D. are grateful forfinancial support from the Marie Curie Innovative Training Net-work OrgBIO (Marie Curie ITN, GA607896) and Science FoundationIreland (SFI) under the Insight Centre for Data Analytics initiative,Grant Number SFI/12/RC/2289

    Simple Load Balancing for Distributed Hash Tables

    Full text link
    Distributed hash tables have recently become a useful building block for a variety of distributed applications. However, current schemes based upon consistent hashing require both considerable implementation complexity and substantial storage overhead to achieve desired load balancing goals. We argue in this paper that these goals can b e achieved more simply and more cost-effectively. First, we suggest the direct application of the "power of two choices" paradigm, whereby an item is stored at the less loaded of two (or more) random alternatives. We then consider how associating a small constant number of hash values with a key can naturally b e extended to support other load balancing methods, including load-stealing or load-shedding schemes, as well as providing natural fault-tolerance mechanisms

    Load-independent characterization of trade-off fronts for operational amplifiers

    Get PDF
    Abstract—In emerging design methodologies for analog integrated circuits, the use of performance trade-off fronts, also known as Pareto fronts, is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the front neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We will address this problem by proposing a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a commonly used circuit, the operational amplifier, and experimental results show that this is a promising approach to solve the issue

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page

    Versatile electronic load

    Get PDF
    Variable load has very fast response under wide range of simulated dynamic operating conditions, and can accept inputs up to 1000 watts. Many types of signals may be applied to load. Variable pulse generator and flip-flop produce rectangular waveform. Other signals include steady state step and single pulse

    Plastic collapse of pipe bends under combined internal pressure and in-plane bending

    Get PDF
    Plastic collapse of pipe bends with attached straight pipes under combined internal pressure and in-plane closing moment is investigated by elastic–plastic finite element analysis. Three load histories are investigated, proportional loading, sequential pressure–moment loading and sequential moment–pressure loading. Three categories of ductile failure load are defined: limit load, plastic load (with associated criteria of collapse) and instability loads. The results show that theoretical limit analysis is not conservative for all the load combinations considered. The calculated plastic load is dependent on the plastic collapse criteria used. The plastic instability load gives an objective measure of failure and accounts for the effects of large deformations. The proportional and pressure–moment load cases exhibit significant geometric strengthening, whereas the moment–pressure load case exhibits significant geometric weakening

    Cognitive Load and Its Relationship with Mental Capacity in Accordance with Their Levels at Students of the Secondary Stage in Terms of Sweller Theory

    Full text link
    The study aimed to identify the cognitive load and its relationshipwith mental capacity in accordance their levels at the students of the secondary stage in the terms of Sweller theory. The study sample consisted of (300) male and female eleventh and twelfth grade students from the leadership schools in Amman. The researcher used the cognitive load scale and the mental capacity scale.The results showed a high level of cognitive load in male and female, a high cognitive Load on students of scientific specialization rather than literary specialization, and that the mental capacity of the study sample in general is moderate, and that the mental capacity of students of scientific specialization is high compared to the mental capacity of students of literary specialization. In addition, that the association between higher mental capacity and cognitive load was higher in males than in females, and that the relationship between the mean mental capacity of both sexes with the cognitive load was statistically significant

    Short-Term Load Forecasting: The Similar Shape Functional Time Series Predictor

    Full text link
    We introduce a novel functional time series methodology for short-term load forecasting. The prediction is performed by means of a weighted average of past daily load segments, the shape of which is similar to the expected shape of the load segment to be predicted. The past load segments are identified from the available history of the observed load segments by means of their closeness to a so-called reference load segment, the later being selected in a manner that captures the expected qualitative and quantitative characteristics of the load segment to be predicted. Weak consistency of the suggested functional similar shape predictor is established. As an illustration, we apply the suggested functional time series forecasting methodology to historical daily load data in Cyprus and compare its performance to that of a recently proposed alternative functional time series methodology for short-term load forecasting.Comment: 22 pages, 6 Figures, 1 Tabl

    Combining Probabilistic Load Forecasts

    Full text link
    Probabilistic load forecasts provide comprehensive information about future load uncertainties. In recent years, many methodologies and techniques have been proposed for probabilistic load forecasting. Forecast combination, a widely recognized best practice in point forecasting literature, has never been formally adopted to combine probabilistic load forecasts. This paper proposes a constrained quantile regression averaging (CQRA) method to create an improved ensemble from several individual probabilistic forecasts. We formulate the CQRA parameter estimation problem as a linear program with the objective of minimizing the pinball loss, with the constraints that the parameters are nonnegative and summing up to one. We demonstrate the effectiveness of the proposed method using two publicly available datasets, the ISO New England data and Irish smart meter data. Comparing with the best individual probabilistic forecast, the ensemble can reduce the pinball score by 4.39% on average. The proposed ensemble also demonstrates superior performance over nine other benchmark ensembles.Comment: Submitted to IEEE Transactions on Smart Gri
    corecore