31,359 research outputs found
Liver lesion segmentation informed by joint liver segmentation
We propose a model for the joint segmentation of the liver and liver lesions
in computed tomography (CT) volumes. We build the model from two fully
convolutional networks, connected in tandem and trained together end-to-end. We
evaluate our approach on the 2017 MICCAI Liver Tumour Segmentation Challenge,
attaining competitive liver and liver lesion detection and segmentation scores
across a wide range of metrics. Unlike other top performing methods, our model
output post-processing is trivial, we do not use data external to the
challenge, and we propose a simple single-stage model that is trained
end-to-end. However, our method nearly matches the top lesion segmentation
performance and achieves the second highest precision for lesion detection
while maintaining high recall.Comment: Late upload of conference version (ISBI
Recommended from our members
Automated CT and MRI Liver Segmentation and Biometry Using a Generalized Convolutional Neural Network.
PurposeTo assess feasibility of training a convolutional neural network (CNN) to automate liver segmentation across different imaging modalities and techniques used in clinical practice and apply this to enable automation of liver biometry.MethodsWe trained a 2D U-Net CNN for liver segmentation in two stages using 330 abdominal MRI and CT exams acquired at our institution. First, we trained the neural network with non-contrast multi-echo spoiled-gradient-echo (SGPR)images with 300 MRI exams to provide multiple signal-weightings. Then, we used transfer learning to generalize the CNN with additional images from 30 contrast-enhanced MRI and CT exams.We assessed the performance of the CNN using a distinct multi-institutional data set curated from multiple sources (n = 498 subjects). Segmentation accuracy was evaluated by computing Dice scores. Utilizing these segmentations, we computed liver volume from CT and T1-weighted (T1w) MRI exams, and estimated hepatic proton- density-fat-fraction (PDFF) from multi-echo T2*w MRI exams. We compared quantitative volumetry and PDFF estimates between automated and manual segmentation using Pearson correlation and Bland-Altman statistics.ResultsDice scores were 0.94 ± 0.06 for CT (n = 230), 0.95 ± 0.03 (n = 100) for T1w MR, and 0.92 ± 0.05 for T2*w MR (n = 169). Liver volume measured by manual and automated segmentation agreed closely for CT (95% limit-of-agreement (LoA) = [-298 mL, 180 mL]) and T1w MR (LoA = [-358 mL, 180 mL]). Hepatic PDFF measured by the two segmentations also agreed closely (LoA = [-0.62%, 0.80%]).ConclusionsUtilizing a transfer-learning strategy, we have demonstrated the feasibility of a CNN to be generalized to perform liver segmentations across different imaging techniques and modalities. With further refinement and validation, CNNs may have broad applicability for multimodal liver volumetry and hepatic tissue characterization
- …