2,351,065 research outputs found

    Application of ultrasound techniques to liquid-liquid dispersed flows

    Get PDF
    This paper delineates the development and application of non-intrusive diagnostic ultrasound (US) techniques for the measurement of the drop size distribution (DSD) and the drop volume fraction in dispersed liquid-liquid flows. The techniques used here are based on the measurement of the speed and the attenuation coefficient of the propagated ultrasound wave. To validate the results of the ultrasound measurements, a planar laser induced fluorescence (PLIF) technique was used to image the dispersed phase at the same time and location as the ultrasound transducers. For the tests, a silicon oil and a glycerol/water mixture, with the same refractive index as the oil, were used. The experiments were carried out in a stirred vessel with the impeller placed either just below the oil/aqueous mixture interface or at 25 mm below the interface and rotated at speeds of 300–400 rpm. The dispersed oil volume fractions measured by both the US and PLIF techniques were in excellent agreement and varied between 0.53% to 4.2%. Good agreement between the two techniques was also found for the drop size distributions. For the conditions investigated, the drop size ranged from 0.25 mm to 2 mm. The results indicated that the developed ultrasound technique is a powerful tool for characterising dispersed phases in liquid-liquid flows

    Liquid-Liquid Polymorphous Transition VS. Micelle Formation of Surfactants

    Get PDF
    Abstract Briefly introduced a new concept of micelle formation of surfactants. Explained smooth poly-morphic transitions, oscillations, hysteresis properties, fluctuations in the size of the micelles. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3636

    Simple Model for Wet Granular Materials with Liquid Clusters

    Full text link
    We propose a simple phenomenological model for wet granular media to take into account many particle interaction through liquid in the funicular state as well as two-body cohesive force by a liquid bridge in the pendular state. In the wet granular media with small liquid content, liquid forms a bridge at each contact point, which induces two-body cohesive force due to the surface tension. As the liquid content increases, some liquid bridges merge, and more than two grains interact through a single liquid cluster. In our model, the cohesive force acts between the grains connected by a liquid-gas interface. As the liquid content increases, the number of grains that interact through the liquid increases, but the liquid-gas interface may decrease when liquid clusters are formed. Due to this competition, our model shows that the shear stress has a maximum as a function of the liquid-content.Comment: 6 pages, 8 figures. Discussion is updated. Accepted for publication in EP

    Chiral separation by enantioselective liquid–liquid extraction

    Get PDF
    The literature on enantioselective liquid–liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid–liquid extraction is a technology of interest for a wide range of chemists and chemical engineers in the fields of fine chemicals, pharmaceuticals, agrochemicals, fragrances and foods. In this review the principles and advances of resolution through enantioselective liquid–liquid extraction are discussed, starting with an introduction on the principles of enantioselective liquid–liquid extraction including host–guest chemistry, extraction and phase transfer mechanisms, and multistage liquid–liquid extraction processing. Then the literature on enantioselective liquid–liquid extraction systems is reviewed, structured on extractant classes. The following extractant classes are considered: crown ether based extractants, metal complexes and metalloids, extractants based on tartrates, and a final section with all other types of chiral extractants.

    Frustration of crystallisation by a liquid–crystal phase

    Get PDF
    Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being “in between” the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids
    corecore