4,056 research outputs found
Anisotropic materials in OLEDs for high outcoupling efficiency
We present the results of an optical study in which we evaluate the effect of anisotropic electron transport layers (ETL) and anisotropic hole transport layers (HTL) on the outcoupling efficiency of bottom emitting organic light emitting diodes (OLEDs). We demonstrate that optical anisotropy can have a profound influence on the outcoupling efficiency and introduce a number of design rules which ensure that light extraction is enhanced by anisotropic layers. © 2015 Optical Society of America
Numerical analysis of nanostructures for enhanced light extraction from OLEDs
Nanostructures, like periodic arrays of scatters or low-index gratings, are
used to improve the light outcoupling from organic light-emitting diodes
(OLED). In order to optimize geometrical and material properties of such
structures, simulations of the outcoupling process are very helpful. The finite
element method is best suited for an accurate discretization of the geometry
and the singular-like field profile within the structured layer and the
emitting layer. However, a finite element simulation of the overall OLED stack
is often beyond available computer resources. The main focus of this paper is
the simulation of a single dipole source embedded into a twofold infinitely
periodic OLED structure. To overcome the numerical burden we apply the Floquet
transform, so that the computational domain reduces to the unit cell. The
relevant outcoupling data are then gained by inverse Flouqet transforming. This
step requires a careful numerical treatment as reported in this paper
Integrated optical model for organic light-emitting devices
One of the most important parameters of organic light-emitting devices (OLEDs) in their application for illumination or displays is their efficiency. In order to maximize the efficiency, one needs to understand all loss mechanisms and effects present in these devices and properly model them. For that purpose, we introduce an integrated model for light emission from OLEDs. The model takes into account the exciton decay time change and light outcoupling. Furthermore, it shows how to calculate the external quantum efficiency, the spectral radiance and the luminous current efficacy of OLEDs. The overall theory is experimentally verified through a range of measurements done on a set of green OLED samples with an Ir-based phosphorescent emitter. From the analysis of simulations and experiments one can estimate the charge balance in the OLED stack and the radiative efficiency of the emitter. © 2011 American Institute of Physics
Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled atom laser beams
We examine the properties of an atom laser produced by outcoupling from a
Bose-Einstein condensate with squeezed light. We model the multimode dynamics
of the output field and show that a significant amount of squeezing can be
transfered from an optical mode to a propagating atom laser beam. We use this
to demonstrate that two-mode squeezing can be used to produce twin atom laser
beams with continuous variable entanglement in amplitude and phase.Comment: 11 pages, 14 figure
Semiclassical limits to the linewidth of an atom laser
We investigate the linewidth of a quasi-continuous atom laser within a
semiclassical framework. In the high flux regime, the lasing mode can exhibit a
number of undesirable features such as density fluctuations. We show that the
output therefore has a complicated structure that can be somewhat simplified
using Raman outcoupling methods and energy-momentum selection rules. In the
weak outcoupling limit, we find that the linewidth of an atom laser is
instantaneously Fourier limited, but, due to the energy `chirp' associated with
the draining of a condensate, the long-term linewidth of an atom laser is
equivalent to the chemical potential of the condensate source. We show that
correctly sweeping the outcoupling frequency can recover the Fourier-limited
linewidth.Comment: 9 Figure
Theory for the photon statistics of random lasers
A theory for the photon statistics of a random laser is presented. Noise is
described by Langevin operators, where both fluctuations of the electromagnetic
field and of the medium are included. The theory is valid for all lasers with
small outcoupling when the laser cavity is large compared to the wavelength of
the radiation. The theory is applied to a chaotic laser cavity with a small
opening. It is known that a large number of modes can be above threshold
simultaneously in such a cavity. It is shown the amount of fluctuations is
increased compared to the Poissonian value by an amount that depends on that
number
Design and fabrication of blazed gratings for a waveguide-type head mounted display
In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real-world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (lambda = 543 nm) and a diffraction angle of 43 degrees. The blazed gratings with a pitch of 508 nm and a fill factor of 0.66 are fabricated using grayscale electron beam lithography. We outline the subsequent replication in a polymer waveguide material with ultraviolet nanoimprint lithography and confirm a throughput efficiency of 17.4%. We finally show the in- and outcoupling of an image through two blazed gratings appearing sharp and non-distorted in the environment. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
A slow gravity compensated Atom Laser
We report on a slow guided atom laser beam outcoupled from a Bose-Einstein
condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser
beam can be controlled by compensating the gravitational acceleration and we
reach residual accelerations as low as 0.0027 g. The outcoupling mechanism
allows for the production of a constant flux of 4.5x10^6 atoms per second and
due to transverse guiding we obtain an upper limit for the mean beam width of
4.6 \mu\m. The transverse velocity spread is only 0.2 mm/s and thus an upper
limit for the beam quality parameter is M^2=2.5. We demonstrate the potential
of the long interrogation times available with this atom laser beam by
measuring the trap frequency in a single measurement. The small beam width
together with the long evolution and interrogation time makes this atom laser
beam a promising tool for continuous interferometric measurements.Comment: 7 pages, 8 figures, to be published in Applied Physics
Continuous optical loading of a Bose-Einstein Condensate
The continuous pumping of atoms into a Bose-Einstein condensate via
spontaneous emission from a thermal reservoir is analyzed. We consider the case
of atoms with a three-level scheme, in which one of the atomic
transitions has a very much shorter life-time than the other one. We found that
in such scenario the photon reabsorption in dense clouds can be considered
negligible. If in addition inelastic processes can be neglected, we find that
optical pumping can be used to continuously load and refill Bose-Einstein
condensates, i.e. provides a possible way to achieve a continuous atom laser.Comment: 12 pages, 8 figure
- …
