707,110 research outputs found

    NKG2D and its ligands: one for all, all for one

    Get PDF
    The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity

    Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands

    Get PDF
    A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    RAGE Signaling in Skeletal Biology

    Get PDF
    PURPOSE OF REVIEW: The receptor for advanced glycation end products (RAGE) and several of its ligands have been implicated in the onset and progression of pathologies associated with aging, chronic inflammation, and cellular stress. In particular, the role of RAGE and its ligands in bone tissue during both physiological and pathological conditions has been investigated. However, the extent to which RAGE signaling regulates bone homeostasis and disease onset remains unclear. Further, RAGE effects in the different bone cells and whether these effects are cell-type specific is unknown. The objective of the current review is to describe the literature over RAGE signaling in skeletal biology as well as discuss the clinical potential of RAGE as a diagnostic and/or therapeutic target in bone disease. RECENT FINDINGS: The role of RAGE and its ligands during skeletal homeostasis, tissue repair, and disease onset/progression is beginning to be uncovered. For example, detrimental effects of the RAGE ligands, advanced glycation end products (AGEs), have been identified for osteoblast viability/activity, while others have observed that low level AGE exposure stimulates osteoblast autophagy, which subsequently promotes viability and function. Similar findings have been reported with HMGB1, another RAGE ligand, in which high levels of the ligand are associated with osteoblast/osteocyte apoptosis, whereas low level/short-term administration stimulates osteoblast differentiation/bone formation and promotes fracture healing. Additionally, elevated levels of several RAGE ligands (AGEs, HMGB1, S100 proteins) induce osteoblast/osteocyte apoptosis and stimulate cytokine production, which is associated with increased osteoclast differentiation/activity. Conversely, direct RAGE-ligand exposure in osteoclasts may have inhibitory effects. These observations support a conclusion that elevated bone resorption observed in conditions of high circulating ligands and RAGE expression are due to actions on osteoblasts/osteocytes rather than direct actions on osteoclasts, although additional work is required to substantiate the observations. Recent studies have demonstrated that RAGE and its ligands play an important physiological role in the regulation of skeletal development, homeostasis, and repair/regeneration. Conversely, elevated levels of RAGE and its ligands are clearly related with various diseases associated with increased bone loss and fragility. However, despite the recent advancements in the field, many questions regarding RAGE and its ligands in skeletal biology remain unanswered

    Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS

    Full text link
    We present a microscopic theory that describes the ordering of two distinct ligands on the surface of a faceted nanoparticle. The theory predicts that when one type of ligand is significantly bulkier than all others, the larger ligands preferentially align themselves along the edges and vertices of the nanoparticle. Monte Carlo simulations confirm these predictions. We show that the intrinsic conformational entropy of the ligands stabilizes this novel edge-aligned phase.Comment: 11 pages, 10 figure

    FGF ligands in Drosophila have distinct activities required to support cell migration and differentiation

    Get PDF
    Fibroblast growth factor (FGF) signaling controls a vast array of biological processes including cell differentiation and migration, wound healing and malignancy. In vertebrates, FGF signaling is complex, with over 100 predicted FGF ligand-receptor combinations. Drosophila melanogaster presents a simpler model system in which to study FGF signaling, with only three ligands and two FGF receptors (FGFRs) identified. Here we analyze the specificity of FGFR [Heartless (Htl) and Breathless (Btl)] activation by each of the FGF ligands [Pyramus (Pyr), Thisbe (Ths) and Branchless (Bnl)] in Drosophila. We confirm that both Pyr and Ths can activate Htl, and that only Bnl can activate Btl. To examine the role of each ligand in supporting activation of the Htl FGFR, we utilize genetic approaches that focus on the earliest stages of embryonic development. When pyr and ths are equivalently expressed using the Gal4 system, these ligands support qualitatively different FGFR signaling responses. Both Pyr and Ths function in a non-autonomous fashion to support mesoderm spreading during gastrulation, but Pyr exhibits a longer functional range. pyr and ths single mutants exhibit defects in mesoderm spreading during gastrulation, yet only pyr mutants exhibit severe defects in dorsal mesoderm specification. We demonstrate that the Drosophila FGFs have different activities and that cell migration and differentiation have different ligand requirements. Furthermore, these FGF ligands are not regulated solely by differential expression, but the sequences of these linked genes have evolved to serve different functions. We contend that inherent properties of FGF ligands make them suitable to support specific FGF-dependent processes, and that FGF ligands are not always interchangeable

    Electrochemistry of ferrocenylphosphines FcCH₂PR₂ (Fc=(η⁵-C₅H₅)Fe(η⁵-C₅H₄); R=Ph, CH₂OH and CH₂CH₂CN), and some phosphine oxide, phosphine sulfide, phosphonium and metal complex derivatives

    Get PDF
    Electrochemical studies of the free ferrocenylphosphine ligands FcCH₂PR₂ (Fc=(η⁵-C₅H₅)Fe(η⁵-C₅H₄); R=Ph, CH₂OH and CH₂CH₂CN) and some phosphine oxide, phosphine sulfide, phosphonium and metal derivatives are described. The free ligands exhibit complex voltammetric responses due to participation of the phosphorus lone pair in the redox reactions. Uncomplicated ferrocene-based redox chemistry is observed for PV derivatives and when the ligands are coordinated in complexes cis-PtCl₂[FcCH₂P(CH₂OH)₂], PdCl₂[FcCH₂P(CH₂OH)₂], [Au{FcCH₂P(CH₂OH)₂}₂]Cl, RuCl₂(η⁶-C₁₀H₁₄)[FcCH₂P(CH₂OH)₂] and RuCl₂(η⁶-C₁₀H₁₄)(FcCH₂PPh₂). The reaction pathways of the free ligands after one-electron oxidation have been examined in detail using voltammetry, NMR spectroscopy and electrospray mass spectrometry. Direct evidence for formation of a P---P bonded product is presented

    Crystal engineering with 2,2':6',2"- terpyridine derivatives and their metal complexes : from simple building blocks to coordination polymers and networks

    Get PDF
    This thesis concerns the design of ligands for use in the construction of larger supramolecular systems, with emphasis on the application of 4'-substitured 2,2',6',2''- terpyridine ligands and their iron(II) and ruthenium(II) complexes in crystal engineering. The first section considers 4'-hydrazone functionalized 2,2',6',2''-terpyridines and their dynamic behaviour in solution and structural characteristics in the solid state, with respect to protonation. Neutral, mono- and di-protonated ligands are considered. The iron(II) and ruthenium(II) complexes of these ligands are reported and their properties studied by variable temperature NMR, UV-visible spectroscopy and single crystal X-ray crystallography. Subtle changes in substituents were found to have dramatic effects on crystal packing and some common packing arrangements were identified. A range of potential ‘expanded ligands’ (complexes which can themselves act as ligands for additional metal centres), are introduced in the next section. These can be potentially used to bridge metal centres to form both discrete and infinite structures, in particular in the solid state. In a systematic study of single crystal X-ray crystal structures of these complexes many were found to be more flexible than they first appear, and that the crystal packing arrangements were often sensitive to solvent. The next section describes the first crystallographically characterized coordination polymers and networks which include metal bis(terpyridine) units. Self-complementary hydrogen bonding was also found to be a stabilizing motif, with a number of such structures prepared. The final chapter blends the ideas of previous sections: 4'-(x-pyridyl) functionalized 2,2',6',2''-terpyridine ligands are used to form ‘expanded ligands’ with iron(II) and ruthenium(II) centres. These were characterized in solution, with protonation of the distant pendant pyridyl ring found to significantly influence the MLCT absorption of the complexes. These complexes were incorporated into two larger structures and characterised by single crystal X-ray crystallography. A selfcomplementary hydrogen bonded polymer which possesses nanopores through the crystal lattice is reported. Iron bis(thiocyanate) was also used to form a bridged coordination polymer

    The therapeutic potential of allosteric ligands for free fatty acid sensitive GPCRs

    Get PDF
    G protein coupled receptors (GPCRs) are the most historically successful therapeutic targets. Despite this success there are many important aspects of GPCR pharmacology and function that have yet to be exploited to their full therapeutic potential. One in particular that has been gaining attention in recent times is that of GPCR ligands that bind to allosteric sites on the receptor distinct from the orthosteric site of the endogenous ligand. As therapeutics, allosteric ligands possess many theoretical advantages over their orthosteric counterparts, including more complex modes of action, improved safety, more physiologically appropriate responses, better target selectivity, and reduced likelihood of desensitisation and tachyphylaxis. Despite these advantages, the development of allosteric ligands is often difficult from a medicinal chemistry standpoint due to the more complex challenge of identifying allosteric leads and their often flat or confusing SAR. The present review will consider the advantages and challenges associated with allosteric GPCR ligands, and examine how the particular properties of these ligands may be exploited to uncover the therapeutic potential for free fatty acid sensitive GPCRs
    corecore