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Abstract

Purpose of review-—The receptor for advanced glycation end products (RAGE) and several of 

its ligands have been implicated in the onset and progression of pathologies associated with aging, 

chronic inflammation, and cellular stress. In particular, the role of RAGE and its ligands in bone 

tissue during both physiological and pathological conditions has been investigated. However, the 

extent to which RAGE signaling regulates bone homeostasis and disease onset remains unclear. 

Further, RAGE effects in the different bone cells and whether these effects are cell-type specific is 

unknown. The objective of the current review is to describe the literature over RAGE signaling in 

skeletal biology as well as discuss the clinical potential of RAGE as a diagnostic and/or 

therapeutic target in bone disease.

Recent findings-—The role of RAGE and its ligands during skeletal homeostasis, tissue repair, 

and disease onset/progression is beginning to be uncovered. For example, detrimental effects of 

the RAGE ligands, advanced glycation end products (AGEs), have been identified for osteoblast 

viability/activity, while others have observed that low level AGE exposure stimulates osteoblast 

autophagy, which subsequently promotes viability and function. Similar findings have been 

reported with HMGB1, another RAGE ligand, in which high levels of the ligand are associated 

with osteoblast/osteocyte apoptosis, whereas low level/short-term administration stimulates 

osteoblast differentiation/bone formation and promotes fracture healing. Additionally, elevated 

levels of several RAGE ligands (AGEs, HMGB1, S100 proteins) induce osteoblast/osteocyte 

apoptosis and stimulate cytokine production, which is associated with increased osteoclast 

differentiation/activity. Conversely, direct RAGE ligand exposure in osteoclasts may have 

inhibitory effects. These observations support a conclusion that elevated bone resorption observed 

in conditions of high circulating ligands and RAGE expression are due to actions on osteoblasts/

osteocytes rather than direct actions on osteoclasts, although additional work is required to 

substantiate the observations.
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Summary-—Recent studies have demonstrated that RAGE and its ligands play an important 

physiological role in the regulation of skeletal development, homeostasis, and repair/regeneration. 

Conversely, elevated levels of RAGE and its ligands are clearly related with various diseases 

associated with increased bone loss and fragility. However, despite the recent advancements in the 

field, many questions regarding RAGE and its ligands in skeletal biology remain unanswered.
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Introduction

The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor 

belonging to the immunoglobulin receptor superfamily [1, 2]. RAGE binds numerous 

endogenous and exogenous ligands and plays a critical role in regulating the innate immune 

response [3]. Additionally, recent evidence suggests that RAGE signaling is involved in 

inflammation resolution, tissue homeostasis, and repair/regeneration following injury [1]. 

Despite this evidence, most studies have focused on the pathological role of RAGE 

signaling. RAGE is upregulated during the onset and progression of a variety of aging- and 

inflammation-associated diseases including diabetes, cancer, cardiovascular disease, 

neurodegeneration, and bone-related pathologies [4–6]. Based on these findings, the 

potential therapeutic effects of targeting RAGE and its ligands to treat/prevent inflammation-

associated pathologies in humans is being investigated. This is supported by the fact that 

global RAGE knockout (KO) mice are viable and do not exhibit profound phenotypic 

abnormalities [7]. Numerous small molecule RAGE inhibitors have been developed over the 

last decade, and their research and clinical utility has been evaluated [3, 8]. Further, the 

diagnostic potential of RAGE and its ligands as biomarkers for the progression and severity 

of various pathologies has also been demonstrated [2, 9–12].

In the skeleton, RAGE plays a role in regulating bone metabolism under physiological 

conditions and may contribute to various bone-related diseases [4]. However, the specific 

cell type that mediates RAGE signaling, and the downstream effects of RAGE activation on 

bone homeostasis and pathology, remain unclear. Further, the therapeutic potential of 

targeting RAGE and its ligands and their diagnostic potential as biomarkers of bone-related 

pathologies has not been elucidated. In this review, we cover the current knowledge on this 

topic and examine the bone cell type-specific roles of RAGE signaling during bone 

metabolism and turnover.

Biology of RAGE and its Ligands

Receptor structure and isoforms

RAGE is ~50kDa protein consisting of an extracellular N-terminal V-type (variable) and two 

C-type (constant) domains, a single transmembrane domain, and a C-terminal cytoplasmic 

tail [1, 3]. The extracellular V-type domain is the receptor ligand binding portion and the 

cytoplasmic tail is required for signal transduction, however, adaptor protein association is 

required for signal transduction [1, 13].
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Full-length (fl)-RAGE mRNA undergoes extensive alternative splicing that generates more 

than 20 isoforms, including membrane and soluble forms [14–16]. N-truncated RAGE is 

composed of the transmembrane and cytoplasmic domains, but lacks the V-type domain 

[14], whereas dominant negative RAGE contains the extracellular and transmembrane 

domains, but lacks the cytoplasmic domain, and is therefore able to bind ligands, but is 

unable to transduce signaling [16].

Further, two extracellular secreted forms of RAGE, endogenous secretory (es) and soluble 

(s) RAGE, have been identified [17]. esRAGE is generated by alternative splicing of RAGE 

mRNA, whereas sRAGE is released following proteolytic cleavage of fl-RAGE by 

ADAM10 and MMP9 [18]. Although the sRAGE isoforms lack the transmembrane and 

cytoplasmic domains, they retain their ligand binding ability, acting as decoy receptors 

preventing ligand binding to RAGE or other receptors [19]. Consistent with this notion, 

sRAGE treatment downregulates RAGE signaling and subsequently decreases inflammation 

[20, 21]. However, sRAGE administration can also stimulate signal transduction and induce 

an inflammatory response [22, 23].

RAGE signaling

RAGE is expressed in various cells types during tissue development, homeostasis, and 

regeneration/repair, suggesting a critical role of RAGE in these processes [1]. Upon ligand 

binding, RAGE activation stimulates downstream signaling pathways (NF-κB, AP-1, CREB, 

STAT3, NFAT) that induce cytokines/chemokines transcription, control cellular processes, 

and influence cell viability by regulating autophagy and apoptosis [1]. Cell type-related 

differences in adaptor protein signaling, as well as cell/tissue-specific gene transcription, are 

potential elements that contribute to cell type-specific effects of RAGE activation [24]. 

Additionally, factors such as metabolic status, reactive oxygen species (ROS) levels, and 

intra- and extracellular redox conditions, can also alter RAGE ligand properties and modify 

downstream signaling [1, 25, 26]. RAGE-ligand signaling and its downstream effects on 

skeletal biology are covered in more detail later in the review.

Aside from binding numerous ligands, RAGE activation alters numerous downstream 

signaling pathways in bone cells. In particular, RAGE is critical for αvβ3 integrin-mediated 

adhesion in osteoclasts [27]. Further, RAGE-deficient osteoclasts are not able to respond to 

vitronectin, a αvβ3-integrin ligand, and exhibit impaired PYK2 and ERK1/2 

phosphorylation. Additionally, RAGE-deficient osteoclasts have reduced integrin expression, 

which is needed for proper osteoclast maturation and adhesion; they also have decreased c-

Fos and NFATc-1 expression in response to M-CSF and RANKL signaling. Dia-1, a member 

of the formin family of proteins, also binds RAGE via an FH1 domain on the cytoplasmic 

tail of the receptor. This allows for signal transduction to elicit cellular migration using the 

GTP-ase activity of Rac-1 and Cdc42, known osteoclastogenic GTP-ases [13, 28]. In 

osteoblasts, AGE-RAGE activation increased Raf/MEK/ERK signaling, decreasing cell 

viability and activating beclin-1 and LC3B-mediated autophagy [29]. Further studies are 

needed to elucidate the multiple signaling pathways that might be activated by RAGE-ligand 

interaction, and the particular signaling cascade activated by different ligands in bone cells.
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RAGE Ligands

RAGE is a pattern recognition receptor (PRR) that binds numerous endogenous and 

exogenous ligands [1, 30]. Aside from RAGE, other PRRs include toll-like receptors 

(TLRs), mannose receptors (MR), and NOD-like receptors (NLR), which bind overlapping 

ligands [31]. RAGE binds endogenous damage-associated proteins (DAMPs), including 

advanced glycation end products (AGEs), high mobility group box 1 (HMGB1), S100 

calgranulin proteins, amyloid β peptide (Aβ), heat shock proteins (HSP), and macrophage 1 

antigen (Mac-1/CD11b), that are released extracellularly in response to cell stress and death 

[4, 19]. Elevated extracellular RAGE ligand levels stimulate RAGE expression, mainly 

through NF-κB activation [32]. RAGE expression is upregulated in multiple cell types/

tissues during the onset/progression of numerous pathological conditions [33]. In particular, 

RAGE expression and extracellular ligand levels play an important role in regulating bone 

metabolism and elevated RAGE-ligand signaling is associated with various pathologies 

characterized by reduced bone mass/strength [4]. Below we further detail the roles of the key 

RAGE-ligands during bone metabolism and pathology.

AGEs.—AGEs occur from aldose sugar-mediated non-enzymatic chemical modifications of 

proteins and lipids [30]. AGE formation and tissue accumulation increases during aging and 

conditions of hyperglycemia such as diabetes. Tissues containing long-lived proteins, such 

as collagen, and with low turnover are particularly vulnerable to such non-enzymatic 

modifications [34]. In bone, AGE accumulation alters the material properties and decreases 

toughness [35, 36]. Additionally, circulating AGEs can bind RAGE, as well as other 

receptors and stimulate signal transduction in various tissues/cell types [30]. AGE-RAGE 

signaling has been implicated in numerous aging-related pathologies [34]. In particular, it 

has been proposed that prolonged AGE signaling plays a role in the onset/progression of 

diabetic osteopenia and may also contribute to aging-related bone fragility [36].

HMGB1 (amphoterin).—HMGB1, first described as a chromatin-bound protein, is 

released by necrotic cells as a DAMP, and subsequently promotes monocyte recruitment and 

pro-inflammatory cytokine release [37]. HMGB1 signals through RAGE, and can also act 

through TLR4 and 2, producing a similar pro-inflammatory response, activating NF-κB 

through effectors such as TRAF6, IKKα, and IKKβ [38]. HMGB1/RAGE signaling 

promotes immune cell differentiation and proliferation [39], as well as cellular migration, 

probably in part due to the secretion of pro-inflammatory cytokines through NF-κB 

signaling [40]. HMGB1 is also extracellularly released by osteoclasts, osteoblasts, and 

osteocytes, which all express RAGE [41]. In primary osteoblasts and MC3T3-E1 

osteoblastic-like cells, parathyroid hormone (PTH) treatment attenuates HMGB1 release, 

whereas in rat UMR 106–01 osteosarcoma cells PTH increases its release. Interestingly, 

both the increased and decreased HMGB1 release from these different cell lines is mediated 

by adenylyl cyclase, highlighting the diversity and context-specific effects of PTH-signaling. 

In osteoclasts, epidermal growth factor-mediated HMGB1 release induces RANK expression 

via CD68 in patients with autoimmune disease, suggesting that HMGB1 promotes osteoclast 

differentiation in human diseases [42].

Plotkin et al. Page 4

Curr Osteoporos Rep. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



S100 calgranulin proteins.—The S100 proteins, are a small (10–12kD), highly-

conserved family of proteins characterized by a unique Ca2+ binding motif [43]. S100 

proteins localize to specific cellular compartments and translocate upon Ca2+ signaling. 

S100 proteins signal through RAGE and/or TLR4, requiring Ca2+ to do so, and are released 

by leukocytes in high-inflammation disease states [44]. Different family members activate or 

inhibit the receptors in a tissue- and context-specific manner. Interestingly, S100 protein 

signaling via RAGE promotes the secretion of cytokines in endothelial cells and leukocytes 

through NF-kB signaling, resulting in a pro-inflammatory environment that contributes to 

disease pathology, for example, in chronic kidney disease [45]. In skeletal muscle, S100B 

promotes proliferation in low-density myoblast cultures, enhancing myogenic differentiation 

via p38/MAPK, [46] whereas in aging, S100B is increased and downregulates myogenic 

differentiation in skeletal muscle [46]. In bone, S100 proteins regulate skeletal metabolism 

through direct and indirect actions on bone cells, however more work is needed to 

understand the cell-type specific roles of S100 proteins [47, 48].

Amyloid Beta Fibrils (Aβ).—Amyloid precursor protein (APP), most famously studied in 

neurodegenerative diseases, aggregates into plaques as amyloid-β (Aβ) via enzymatic 

cleavage [49]. Aβ signals through RAGE, potentially due to its structural similarities to a 

glycoprotein [50]. In the brain, Aβ binding to RAGE signals through p38/MAPK and 

receptor-mediated protein uptake [51]. Aβ is also expressed in bone and influences bone cell 

activity. For example, γ secretase-dependent cleavage of APP alters osteoblast activity; and 

Aβ promotes RANKL-induced osteoclast differentiation via NF-κB, ERK, and calcium 

oscillation signaling [52]. Additionally, skeletal analysis in APPswe/Aβ transgenic mice 

found that Aβ regulates osteoclastogenesis and RAGE expression in an age-dependent 

manner [53]. Aβ peptide expression is also elevated in osteoporotic bone tissue, consistent 

with the pro-inflammatory/pathological effects of Aβ during aging and disease onset/

progression [54, 55]. Further, the antioxidant curculigoside attenuates memory and bone loss 

in APP/PS1 transgenic mice, highlighting a potential involvement of Aβ signaling in bone 

loss [56].

Physiological RAGE Signaling in Bone

Bone cells [mesenchymal stem cells (MSCs), osteoclasts, osteoblasts, and osteocytes] 

express RAGE and its expression is differentially regulated during cell proliferation, 

differentiation, and survival [4]. Further, studies in global RAGE KO mice have 

demonstrated the importance of RAGE in the regulation of bone accrual and turnover [57, 

58]. However, while it is clear that RAGE plays a critical role in the skeleton, the 

mechanisms underlying these effects and the cell-type specific roles of RAGE and its 

ligands in bone remain unclear.

Young (1–3-month-old) RAGE KO mice exhibit high bone mineral density (BMD), bone 

volume, and biomechanical strength compared to wildtype mice [57]. Consistently, whole 

body/vertebral BMD and vertebral cancellous bone volume are also higher in 4-month-old 

RAGE KO compared to wildtype mice [58]. However, femoral bone mass accrual was 

attenuated and femoral cancellous bone volume was reduced in the absence of RAGE. 

Further, RAGE KO mice maintain bone mass and exhibit reduced bone resorption following 
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ovariectomy (OVX) [59], but RAGE deficiency impaired PTH-induced increases in femur 

cancellous bone volume, whereas it did not prevent the effects of PTH on vertebral 

cancellous bone.

Consistent with the high bone mass of RAGE KO mice, in vivo and in vitro studies showed 

that osteoclast differentiation and activity are decreased in RAGE KO compared to wildtype 

mice [4, 57, 60]. Further, RAGE expression is increased during osteoclast differentiation and 

RANKL stimulates RAGE expression in osteoclasts in a time- and dose-dependent manner 

[4, 57]. Additionally, in vitro studies demonstrated that RANKL-mediated osteoclast 

differentiation/activity is attenuated in bone marrow cells isolated from RAGE KO mice and 

RAGE deficiency leads to morphological defects, which are associated with reduced 

osteoclast differentiation and bone resorption [60]. These osteoclast defects are due to 

defective αvβ3-dependent signaling and attenuated actin-based cytoskeletal organization in 

RAGE KO bone marrow-derived macrophages (BMMs) and pre-osteoclasts. Further, in vitro 
mechanistic studies demonstrated that RAGE is required for the signaling events that 

stimulate osteoclast differentiation and function, upon engagement of M-CSF and αvβ3 

integrin-signaling. However, whether RAGE controls integrin signaling at the 

transcriptional, cell surface, or intracellular level remains unknown [57, 60]. Overall, these 

findings highlight the important role that RAGE signaling plays in regulating osteoclast 

development and activity.

RAGE signaling also appears to play an important role in osteoblasts and osteocytes, 

although this topic has been less studied. Consistent with the decreased femoral cancellous 

bone accrual and altered architecture detected in the 4-month-old RAGE KO mice, the 

expression of several osteoblast-associated genes, ALP, Cola1, Runx2, and Osterix was 

decreased in femurs from these mice [58]. Further, global RAGE deficiency suppresses 

PPARα and its co-factor PGC1α, which leads to a pro-inflammatory phenotype in bones 

and osteoblasts from RAGE KO compared to control mice [61]. It should be noted that the 

meaning of the “pro-inflammatory phenotype” was not clearly described in the Biswas 

study, making it hard to draw conclusions about the osteoblastic effects of RAGE deficiency. 

In addition to these findings, preliminary work by our group found that in vitro 
mineralization is decreased in bone marrow cells from global RAGE KO compared to age-

matched wildtype control mice. While these findings point to an essential role of RAGE 

signaling in osteoblast metabolism and function, additional studies are needed to clearly 

elucidate RAGE roles in osteoblasts and the mechanisms mediating these effects. Further, 

more work is needed to determine whether RAGE signaling also regulates osteocyte 

viability/function.

Taken together, this evidence suggests that RAGE signaling plays an important role in 

regulating both osteoclast and osteoblast differentiation/activity. Further, RAGE signaling 

effects are both age-related and bone site-specific. Overall, while our understanding of the 

mechanisms that regulate the downstream effect of RAGE signaling in bone under both 

physiological and pathological conditions has advanced in recent years, many questions still 

remain unanswered.
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RAGE Ligand Regulation of Bone Metabolism

Low dose/intermittent exposure

Consistent with the inhibitory effects of genetic RAGE deficiency in osteoblasts, several 

studies have identified beneficial effects associated with RAGE ligand stimulation and 

signaling in MSCs and osteoblastic cells (Figure 1A). In particular, HMGB1 signaling in 

MSCs/osteoblasts promotes tooth socket bone healing in mice following a tooth extraction 

[62]. Further, HMGB1 stimulates cytokine release and promotes osteogenic MSC 

differentiation [63]. Consistent with the beneficial effects of HMGB1 on bone repair, 

treatment of bone fracture sites with HMGB1 and MSC-containing gelatin sponges enhances 

fracture repair [64]. Additionally, HMGB1 drives osteoblast migration and promotes fracture 

site vascularization, which in turn stimulates endochondral bone formation [39, 65]. 

Hypoxic-conditions also induce HMGB1 expression/release, which subsequently promotes 

osteoblast proliferation [66]. Moreover, recent studies found that low levels of AGEs have 

beneficial effects on osteoblasts. One study demonstrated that low levels of AGE-RAGE 

signaling stimulates autophagy and enhances osteoblast viability [29]. These findings 

highlight the possibility that under physiological conditions short-term or low level RAGE 

ligand exposure may have protective effects in bone cells. This notion is consistent with the 

idea that chronic rather than acute RAGE signaling induced by inflammation/cell stress 

leads to disease onset/progression.

High dose/chronic exposure

Despite the beneficial effects of low-dose/short-term RAGE ligand exposure, high-dose 

exposure negatively affects bone metabolism (Figure 1A). In particular, AGE treatment in 

MSCs prevents proliferation/differentiation into osteoblasts and inhibits mineralization [67]. 

Further, AGEs increase ROS generation, stimulate RAGE expression, and induce MSC 

apoptosis [68, 69]. Similar effects of AGEs have been observed in osteoblasts and 

osteocytes. In hFOB1.19 osteoblastic cells, AGEs stimulate mitochondrial dysfunction and 

apoptosis [70–72]. Consistently, AGE exposure inhibits osteoblast proliferation/

differentiation, decreases osteoblastic gene expression and suppresses mineralization and 

lysyl oxidase enzyme activity [73–76]. AGEs also stimulate apoptosis in MLO-Y4 

osteocytic cells [77] and promote pro-inflammatory cytokine release (IL-6, TNFa, RANKL, 

VEGFA) from osteoblasts and osteocytes [78–80]. Additionally, HMGB1 and S100A9 have 

similar effects on cell viability and cytokine production/release in osteoblasts and osteocytes 

[47, 48, 81].

In particular, work by our group demonstrated that apoptotic MLO-Y4 osteocytes release 

elevated levels of RANKL and HMGB1 and prevention of apoptosis or blockade of HMGB1 

actions attenuated RANKL expression/release [81]. Further, we found that conditioned 

media (CM) from apoptotic MLO-Y4 osteocytes induced osteoclast differentiation; and 

inhibition of apoptosis or blockade of HMGB1 actions in osteocytes attenuated these effects 

[81]. Further, inhibition of HMGB1 autocrine actions in osteocytes using neutralizing 

antibodies, followed by immune-precipitation (IP) to remove the antibody-HMGB1 

complexes from the CM blocked the increases in osteoclastogenesis induced by CM from 

apoptotic Cx43-deficient MLO-Y4 cells. On the other hand, IP removal of HMGB1 after 
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collecting the osteocytic CM did not prevent osteoclast differentiation. These findings 

suggest that HMGB1 autocrine actions on osteocytes, rather than direct actions on 

osteoclasts mediate the pro-osteoclastogenic effects of HMGB1 (Figure 1B). Consistent with 

this notion, S100A9 treatment in osteoblasts stimulated RAGE expression and promoted 

cytokine release; and S100A9-treated osteoblast CM increased osteoclast differentiation/

activity, whereas directly in osteoclasts S100A9 inhibited osteoclastogenesis [47].

Similar effects have also been found with other RAGE ligands. For example, while high 

levels of AGEs during chronic inflammation induces apoptosis and increases inflammatory 

cytokine release in osteoblasts/osteocytes, the direct effects of AGEs in osteoclasts is not as 

well understood. While some studies have suggested that AGEs induce osteoclast 

differentiation/activity, others have found that AGEs inhibit osteoclast differentiation/

activity. In pre-osteoclasts, AGE treatment inhibits fusion/differentiation and decreases 

resorption, whereas in mature osteoclasts treatment slightly increases differentiation/activity 

[82]. On the other hand, AGEs increase osteoblasts/osteocytes cytokine release, which may 

subsequently increase osteoclastogenesis. Consistently, high levels of AGE in bone are 

associated with increased osteoclast activity in humans, despite a lack of effect of AGEs on 

osteoclast activity in vitro [83].

Overall, these findings suggest that, at least at high doses/chronic exposure, RAGE ligands 

(AGEs, HMGB1, S100 proteins) may directly induce apoptosis and inhibit bone cell 

differentiation/activity (Figure 1). Additionally, these findings suggest that RAGE-ligand 

signaling-induced apoptosis in osteoblast/osteocytes stimulates cytokine release, which may 

subsequently induce osteoclast differentiation/activation.

RAGE and its Ligands in Bone Disease

In addition to their physiological roles, RAGE and its ligands are involved in various 

pathologies characterized by reduced bone mass and increased fragility/fracture. RAGE 

expression and its ligands are upregulated in numerous pathologies characterized by 

systemic inflammation, which are also associated with bone loss [3]. Consistently, as 

discussed above, elevated RAGE expression and increased circulating levels of RAGE 

ligands alter bone cell differentiation, activity, and viability pointing to the potential 

involvement of RAGE signaling in the onset of bone loss in these pathologies [4].

In particular, RAGE and its ligands have been linked to several diabetes-associated 

conditions and elevated levels of circulating AGEs and increased RAGE signaling are 

associated with osteoporosis in diabetes [36]. AGEs negatively affect bone metabolism in 

diabetes; and decrease bone healing in a mouse model of type 1 diabetes (T1D) [84]. 

Consistently, bone marrow MSC maintenance is impaired in mouse models of both T1D and 

T2D; and RAGE KO mice are resistant to the streptozotocin T1D-induced decreases in 

MSCs [69]. These pieces of evidence highlight the potential involvement of RAGE 

expression/signaling during the onset and progression of diabetes-related bone loss.
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RAGE as a Biomarker for Bone Disease/Osteoporosis

Due the presence of circulating soluble RAGE isoforms in serum/plasma, the diagnostic 

potential of sRAGE as a biomarker has been evaluated in various diseases [12]. However, to 

date the preventive and diagnostic potential of sRAGE in bone disease has been quite 

contradictory. Thus, no association between RAGE polymorphisms and bone fractures were 

detected in T2D patients, and no correlation between circulating sRAGE levels and 

osteoporosis was found [85].

However, findings from other studies have suggested that low levels of sRAGE may be 

indicative of bone disease and be associated with high bone resorption, due to the absence of 

the inhibitory decoy effects of sRAGE. Consistent with this possibility, low serum esRAGE 

levels is a risk factor for vertebral fractures [86]. Additionally, low serum sRAGE and 

S100A12 levels in juvenile idiopathic arthritis correlated with increased disease activity 

[87].

Several other recent studies have suggested that sRAGE levels may actually be elevated in 

osteoporotic patients. sRAGE levels were elevated in rheumatoid patients with high levels of 

bone and cartilage turnover prior to hormone replacement therapy (HRT) [88]. Following 

HRT, patients exhibited decreased sRAGE levels that correlated with increases in BMD. 

Additionally, elevated levels of circulating AGE and esRAGE were associated with 

increased bone turnover and hip fracture incidence in elderly men [89]. Further, circulating 

sRAGE levels significantly correlate with osteopenia and osteoporosis [90]. And, higher 

sRAGE levels positively associated with elevated FGF23 levels, a protein known to be 

elevated in osteoporotic patients. Interestingly, sRAGE levels also negatively correlated to 

BMI and leptin, suggesting sRAGE could be a biomarker indicative of both bone fragility 

and lipid metabolism. The authors of this study also speculated that elevated sRAGE could 

be a direct effect of increased MMP9 activity, suggesting that sRAGE may be an indicator of 

increased osteoclast activity rather than an inhibitor of bone resorption due to its decoy 

activity. Based on this notion, sRAGE may indicate high levels of bone turnover and may be 

higher when circulating DAMP levels are elevated. Interestingly, recent studies by our group 

found that esRAGE and TLR4, but not RAGE mRNA expression is increased in osteocyte 

enriched long bones of aged (21-month-old) compared to young (4-month-old) mice, 

suggesting that elevated membrane bound RAGE expression, at least in osteocytes, may not 

be responsible for promoting age-related bone loss and circulating sRAGE levels may 

actually be elevated in aging-induced osteoporosis.

Therapeutic Potential of Targeting RAGE and its Ligands

Based on the idea that chronic elevated RAGE signaling contributes to the onset/progression 

of bone disease in aging and conditions of increased inflammation, several studies have 

examined the effects of targeting/blocking RAGE and its ligands in bone. Due to its decoy 

inhibitory properties, the therapeutic potential of sRAGE has been examined by several 

groups [91]. Additionally, blockade of RAGE signaling by sRAGE administration has 

beneficial effects in mouse models of Alzheimer’s disease [92]. In MSCs, sRAGE 

transfection prevents HMGB1-induced inflammation [93]. Further, RAGE inhibition by 

sRAGE treatment also had protective effects on bone metabolism and diminished alveolar 
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bone loss in a mouse model of diabetic periodontal disease [91]. Despite the anti-

inflammatory effects following sRAGE administration, other studies have seen cell/tissue-

type specific pro-inflammatory effects with sRAGE [18, 22, 23].

In addition to sRAGE, numerous small-molecule inhibitors that target RAGE and its ligands 

have developed and evaluated over the last decade [8]. For example, the small molecule 

TTP488 (Azeliragon) inhibits RAGE ability to bind ligands, including AGEs, HMGB1, 

S100 proteins, and Aβ [94]. The effects of this compound in Alzheimer’s disease have been 

evaluated in both pre-clinical mouse models and clinical trials [95, 96]. In addition, 

screening a library of small molecule RAGE inhibitors, FPS-ZM1, a compound that inhibits 

RAGE-Aβ interactions was identified [97]. Pre-clinical studies with FPS-ZM1 showed 

beneficial effects in many disease states, including neuro-inflammation and cancer. 

Additionally, FPS-ZM1 has protective effects in bone by preventing RAGE-dependent 

mitochondrial dysfunction and apoptosis in osteoblasts and osteocytes [72, 78]. These 

findings highlight the therapeutic potential of small-molecule RAGE inhibitors to treat 

and/or prevent bone disease.

Conclusions

RAGE and its ligands play an important physiological role in the skeleton, and elevated 

levels of RAGE and its ligands are clearly related to various bone-related diseases. Despite 

the recent advances in this field, many remain questions unanswered: 1) What are the 

specific roles that RAGE and its ligands play in the various bone cell types under 

physiological and pathological conditions? 2) What is the therapeutic potential of RAGE and 

its ligands as pharmacological targets to prevent bone loss/fragility induced with aging and 

inflammatory diseases? 3) Could RAGE and its ligands provide diagnostic utility serving as 

biomarkers of bone disease progression and severity? Thus, while our understanding of 

RAGE signaling in the skeleton has improved, several key questions remain to be answered 

and warrant further investigation.
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Figure 1: RAGE ligands signaling in bone cells: direct and indirect effects.
Schematic illustration of the dose and bone cell-type specific effects of RAGE-ligand 

signaling in the skeleton. (A) Direct bone-cell type specific effects of low-dose/short-term 

and high-dose/chronic RAGE ligand exposure. (B) Indirect and paracrine-signaling bone 

microenvironment changes induced by RAGE ligand-signaling.
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