153,885 research outputs found

    The multivariate least trimmed squares estimator.

    Get PDF
    In this paper we introduce the least trimmed squares estimator for multivariate regression. We give three equivalent formulations of the estimator and obtain its breakdown point. A fast algorithm for its computation is proposed. We prove Fisher-consistency at the multivariate regression model with elliptically symmetric error distribution and derive the influence function. Simulations investigate the finite-sample efficiency and robustness of the estimator. To increase the efficiency of the estimator, we also consider a one-step reweighted version, as well as multivariate generalizations of one-step GM-estimators.Model; Data; Distribution; Simulation;

    Performance analysis of the Least-Squares estimator in Astrometry

    Full text link
    We characterize the performance of the widely-used least-squares estimator in astrometry in terms of a comparison with the Cramer-Rao lower variance bound. In this inference context the performance of the least-squares estimator does not offer a closed-form expression, but a new result is presented (Theorem 1) where both the bias and the mean-square-error of the least-squares estimator are bounded and approximated analytically, in the latter case in terms of a nominal value and an interval around it. From the predicted nominal value we analyze how efficient is the least-squares estimator in comparison with the minimum variance Cramer-Rao bound. Based on our results, we show that, for the high signal-to-noise ratio regime, the performance of the least-squares estimator is significantly poorer than the Cramer-Rao bound, and we characterize this gap analytically. On the positive side, we show that for the challenging low signal-to-noise regime (attributed to either a weak astronomical signal or a noise-dominated condition) the least-squares estimator is near optimal, as its performance asymptotically approaches the Cramer-Rao bound. However, we also demonstrate that, in general, there is no unbiased estimator for the astrometric position that can precisely reach the Cramer-Rao bound. We validate our theoretical analysis through simulated digital-detector observations under typical observing conditions. We show that the nominal value for the mean-square-error of the least-squares estimator (obtained from our theorem) can be used as a benchmark indicator of the expected statistical performance of the least-squares method under a wide range of conditions. Our results are valid for an idealized linear (one-dimensional) array detector where intra-pixel response changes are neglected, and where flat-fielding is achieved with very high accuracy.Comment: 35 pages, 8 figures. Accepted for publication by PAS

    Asymptotic properties of least squares statistics in general vector autoregressive models

    Get PDF
    A vector autoregression with deterministic terms with no restrictions to its characteristic roots is considered. Strong consistency results and also some weak convergence results are given for a number of least squares statistics. These statistics are related to the denominator matrix of the least squares estimator as well as the least squares estimator itself. Applications of these results to the statistical analysis of non-stationary economic time-series are briefly discussed.Asymptotic normality, Cointegration, Least squares, Martingales, Sample correlations, Strong consistency, Vector autoregressive model, Weak consistency.

    A smoothed least squares estimator for threshold regression models

    Get PDF
    We propose a smoothed least squares estimator of the parameters of a threshold regression model. Our model generalizes that considered in Hansen (2000) to allow the thresholding to depend on a linear index of observed regressors, thus allowing discrete variables to enter. We also do not assume that the threshold e¤ect is vanishingly small. Our estimator is shown to be consistent and asymptotically normal thus facilitating standard inference techniques based on estimated standard errors or standard bootstrap for the threshold parameters themselves. We compare our con dence intervals with those of Hansen (2000) in a simulation study and show that our methods outperform his for large values of the threshold. We also include an application to cross-country growth regressions
    • …
    corecore