292,119 research outputs found
Facial Landmark Detection: a Literature Survey
The locations of the fiducial facial landmark points around facial components
and facial contour capture the rigid and non-rigid facial deformations due to
head movements and facial expressions. They are hence important for various
facial analysis tasks. Many facial landmark detection algorithms have been
developed to automatically detect those key points over the years, and in this
paper, we perform an extensive review of them. We classify the facial landmark
detection algorithms into three major categories: holistic methods, Constrained
Local Model (CLM) methods, and the regression-based methods. They differ in the
ways to utilize the facial appearance and shape information. The holistic
methods explicitly build models to represent the global facial appearance and
shape information. The CLMs explicitly leverage the global shape model but
build the local appearance models. The regression-based methods implicitly
capture facial shape and appearance information. For algorithms within each
category, we discuss their underlying theories as well as their differences. We
also compare their performances on both controlled and in the wild benchmark
datasets, under varying facial expressions, head poses, and occlusion. Based on
the evaluations, we point out their respective strengths and weaknesses. There
is also a separate section to review the latest deep learning-based algorithms.
The survey also includes a listing of the benchmark databases and existing
software. Finally, we identify future research directions, including combining
methods in different categories to leverage their respective strengths to solve
landmark detection "in-the-wild"
Dense Face Alignment
Face alignment is a classic problem in the computer vision field. Previous
works mostly focus on sparse alignment with a limited number of facial landmark
points, i.e., facial landmark detection. In this paper, for the first time, we
aim at providing a very dense 3D alignment for large-pose face images. To
achieve this, we train a CNN to estimate the 3D face shape, which not only
aligns limited facial landmarks but also fits face contours and SIFT feature
points. Moreover, we also address the bottleneck of training CNN with multiple
datasets, due to different landmark markups on different datasets, such as 5,
34, 68. Experimental results show our method not only provides high-quality,
dense 3D face fitting but also outperforms the state-of-the-art facial landmark
detection methods on the challenging datasets. Our model can run at real time
during testing.Comment: To appear in ICCV 2017 Worksho
Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications
This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems
2D shape classification and retrieval
We present a novel correspondence-based technique for efficient shape classification and retrieval. Shape boundaries are described by a set of (ad hoc) equally spaced points – avoiding the need to extract “landmark points”. By formulating the correspondence problem in terms of a simple generative model, we are able to efficiently compute matches that incorporate scale, translation, rotation and reflection invariance. A hierarchical scheme with likelihood cut-off provides additional speed-up. In contrast to many shape descriptors, the concept of a mean (prototype) shape follows naturally in this setting. This enables model based classification, greatly reducing the cost of the testing phase. Equal spacing of points can be defined in terms of either perimeter distance or radial angle. It is shown that combining the two leads to improved classification/retrieval performance
- …
