98,350 research outputs found

    Lagrange optimality system for a class of nonsmooth convex optimization

    Get PDF
    In this paper, we revisit the augmented Lagrangian method for a class of nonsmooth convex optimization. We present the Lagrange optimality system of the augmented Lagrangian associated with the problems, and establish its connections with the standard optimality condition and the saddle point condition of the augmented Lagrangian, which provides a powerful tool for developing numerical algorithms. We apply a linear Newton method to the Lagrange optimality system to obtain a novel algorithm applicable to a variety of nonsmooth convex optimization problems arising in practical applications. Under suitable conditions, we prove the nonsingularity of the Newton system and the local convergence of the algorithm.Comment: 19 page

    Augmented Lagrangian Functions for Cone Constrained Optimization: the Existence of Global Saddle Points and Exact Penalty Property

    Full text link
    In the article we present a general theory of augmented Lagrangian functions for cone constrained optimization problems that allows one to study almost all known augmented Lagrangians for cone constrained programs within a unified framework. We develop a new general method for proving the existence of global saddle points of augmented Lagrangian functions, called the localization principle. The localization principle unifies, generalizes and sharpens most of the known results on existence of global saddle points, and, in essence, reduces the problem of the existence of saddle points to a local analysis of optimality conditions. With the use of the localization principle we obtain first necessary and sufficient conditions for the existence of a global saddle point of an augmented Lagrangian for cone constrained minimax problems via both second and first order optimality conditions. In the second part of the paper, we present a general approach to the construction of globally exact augmented Lagrangian functions. The general approach developed in this paper allowed us not only to sharpen most of the existing results on globally exact augmented Lagrangians, but also to construct first globally exact augmented Lagrangian functions for equality constrained optimization problems, for nonlinear second order cone programs and for nonlinear semidefinite programs. These globally exact augmented Lagrangians can be utilized in order to design new superlinearly (or even quadratically) convergent optimization methods for cone constrained optimization problems.Comment: This is a preprint of an article published by Springer in Journal of Global Optimization (2018). The final authenticated version is available online at: http://dx.doi.org/10.1007/s10898-017-0603-

    Universal Compressed Sensing

    Full text link
    In this paper, the problem of developing universal algorithms for compressed sensing of stochastic processes is studied. First, R\'enyi's notion of information dimension (ID) is generalized to analog stationary processes. This provides a measure of complexity for such processes and is connected to the number of measurements required for their accurate recovery. Then a minimum entropy pursuit (MEP) optimization approach is proposed, and it is proven that it can reliably recover any stationary process satisfying some mixing constraints from sufficient number of randomized linear measurements, without having any prior information about the distribution of the process. It is proved that a Lagrangian-type approximation of the MEP optimization problem, referred to as Lagrangian-MEP problem, is identical to a heuristic implementable algorithm proposed by Baron et al. It is shown that for the right choice of parameters the Lagrangian-MEP algorithm, in addition to having the same asymptotic performance as MEP optimization, is also robust to the measurement noise. For memoryless sources with a discrete-continuous mixture distribution, the fundamental limits of the minimum number of required measurements by a non-universal compressed sensing decoder is characterized by Wu et al. For such sources, it is proved that there is no loss in universal coding, and both the MEP and the Lagrangian-MEP asymptotically achieve the optimal performance

    Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms with Directed Gossip Communication

    Full text link
    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.Comment: 28 pages, journal; revise

    Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

    Full text link
    This study investigates the optimization aspects of imposing hard inequality constraints on the outputs of CNNs. In the context of deep networks, constraints are commonly handled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization has been largely avoided, except for a few recent works, mainly due to the computational complexity and stability/convergence issues caused by alternating explicit dual updates/projections and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penalties do not materialize in practice. We propose log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier methods, our formulation does not need an initial feasible solution. Furthermore, we provide a new technical result, which shows that the proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We report comprehensive weakly supervised segmentation experiments, with various constraints, showing that our formulation outperforms substantially the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and training stability, more so when dealing with a large number of constraints

    On Lagrangian Duality in Vector Optimization. Applications to the linear case.

    Get PDF
    The paper deals with vector constrained extremum problems. A separation scheme is recalled; starting from it, a vector Lagrangian duality theory is developed. The linear duality due to Isermann can be embedded in this separation approach. Some classical applications are extended to the multiobjective framework in the linear case, exploiting the duality theory of Isermann.Vector Optimization, Separation, Image Space Analysis, Lagrangian Duality, Set-Valued Function.
    corecore