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1 Introduction and preliminaries

In the last years, there has been a growing interest addressed to the study of Vector Optimization.

Since the development has been rather rapid, the research in the field of Vector Optimization

has given rise to autonomous and not always well-connected investigations. In the eighties, it

was evidenced the necessity of a unified approach that embraces the different developments;

systematic studies in this sense can be found in [6], [7] and [12].

In the present paper, in Sect.2, we recall a general scheme for vector problems introduced in

[3], where it is proposed an approach - based on separation arguments and alternative theorems

- which embraces existing developments and which introduces new ones. This approach, that

is based on analysis in the image space, is exploited to study Lagrangian duality in Vector

Optimization. In Sect.3 it is shown that the vector linear duality of Isermann [5] can be embedded

in this separation approach. In Sect.4 we propose some applications of the linear vector duality

scheme introduced by Isermann in [5]. We start with a problem of minimization of costs and

we extend this to a problem with two objectives; subsequently, a problem of maximization of

profit is considered for two different firms. In both cases, we study the relationships between the

shadow prices and we give a possible representation of the feasible region of the dual problem.

Now, we recall some notations and notions useful in what follows. On denotes the n-tuple,

whose entries are zero; when there is no fear of confusion the subfix is omitted; for n = 1, the

1-tuple is identified with its element, namely, we set O1 = 0.

Let the positive integers ℓ,m, n, the cone C ⊆ Rℓ, the vector-valued functions f : Rn → R
ℓ and

g : Rn → R
m and the subset X ⊆ Rn be given. In the sequel, it will be assumed that C is

convex, closed and pointed with apex at the origin and with intC 6= Ø, namely with nonempty

interior; clA and intA will denote the closure and the interior, respectively, of the set A ⊂ Rn;

〈., .〉 is the usual inner product in Rn.

Consider the following vector minimization problem, which is called generalized Pareto prob-

lem:

minC\{O}f(x) subject to x ∈ Y = {x ∈ X : g(x) ≥ O}, (1)

where minC\{O} denotes vector minimum with respect to the cone C\{O}: y ∈ Y is a (global)

vector minimum point (for short, v.m.p.) of (1), iff

f(y) �C\{O} f(x),∀x ∈ Y, (2)
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where the inequality means f(y) − f(x) /∈ C\{O}. At C = Rℓ
+ (1) becomes the classic Pareto

vector problem. We will assume that v.m.p. exist.

Obviously, y ∈ Y is a v.m.p. of (1), i.e (2) is fulfilled, iff the system (in the unknown x)

f(y) − f(x) ∈ C, f(y) − f(x) 6= O, g(x) ≥ O, x ∈ X (3)

is impossible. System (3) is impossible iff H ∩ K(y) = Ø, where H := (C\{O}) × Rm
+ and

K(y) := {(u, v) ∈ Rℓ ×Rm : u = f(y) − f(x), v = g(x), x ∈ X}. H and K(y) are subsets of

R
ℓ ×Rm, that is called image space; K(y) is called image of problem (1).

In general, to prove directly H∩K(y) = Ø is a difficult task; this disjunction can be proved

by means of a sufficient condition, that consists in obtaining the existence of a function, such

that two of its disjoint level sets contain H and K(y), respectively.

To this end, let us consider the sets U = C\{O}, V = R
m
+ and U∗

C\{O} := {Θ ∈ R
ℓ×ℓ :

Θu ≥C\{O} O, ∀u ∈ U}, V ∗
C := {Λ ∈ Rℓ×m : Λv ≥C O, ∀v ∈ V }. Let us introduce the class of

functions w : Rℓ ×Rm → R
ℓ, defined by:

w = w(u, v,Θ,Λ) = Θu + Λv, Θ ∈ U∗
C\{O}, Λ ∈ V ∗

C , (4)

where Θ,Λ are parameters; w is called separation function. The positive and non positive level

sets of a vector separation function w are defined as follows:

WC\{O} := {(u, v) ∈ Rℓ ×Rm : w(u, v,Θ, Λ) ≥ C\{O}};

WC\{O} := {(u, v) ∈ Rℓ ×Rm : w(u, v,Θ,Λ) � C\{O}}.

In [3] there are the proofs of Proposition 1 and Theorem 1.

Proposition 1 (see Proposition 1 of [3]) Let w be given by (4); then we have H ⊂ WC\{O}, ∀Θ ∈

U∗
C\{O}, ∀Λ ∈ V ∗

C .

Proposition 1 is a first step towards a sufficient condition for the optimality of y. It is obvious

that, if we can find one of the functions of class (4), such that K(y) ⊂ WC\{O}, then the

optimality of y is reached. Indeed, we have the following result.

Theorem 1 (see Theorem 1 of [3]) Let y ∈ Y , if there exist matrices Θ ∈ U∗
C\{O},Λ ∈ V ∗

C such

that w(f(y)−f(x), g(x),Θ,Λ) = Θ(f(y)−f(x))+Λg(x) �C\{O} O, ∀x ∈ X, then y is a (global)

v.m.p. of (1).
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At ℓ = 1 and C = R+, the above theorem collapses to an existing one for scalar optimization

(see Corollary 5.1 of [2]). Moreover, in the scalar case, there exists a known correspondence

between the vector of Kuhn-Tucker multipliers and the parameters defining w. When ℓ > 1

and C = R
ℓ
+, the natural extension would be to consider Θ and Λ as the matrices obtained

as marginal rate of substitution of one objective function with respect to another and of one

objective function with respect to a constraint, respectively (see [9]). Unfortunately, in general,

they do not satisfy the conditions Θ ∈ U∗
C\{O},Λ ∈ V ∗

C . Only if we take the matrix Θ in its

absolute value, the pair (Θ,Λ), defined in [9], is such that Θ ∈ U∗
C\{O}, Λ ∈ V ∗

C . Observe that

the identity matrix of order ℓ, say Iℓ, belongs to U∗
C\{O} and that, when ℓ = 1, Θ can be replaced

by 1.

2 Lagrangian duality

In order to satisfy the sufficient optimality condition expressed by Theorem 1, it is natural to

study, for each fixed (Θ, Λ) ∈ U∗
C\{O} × V ∗

C the following vector optimization problem:

maxC\{O}w(u, v, Θ,Λ), (u, v) ∈ K(y), (5)

where w is given by (4) and maxC\{O} denotes vector maximum with respect to C\{O}: (ū, v̄) ∈

K(y) is a vector maximum point of (5), iff

w(ū, v̄,Θ,Λ) �C\{O} w(u, v, Θ,Λ), ∀(u, v) ∈ K(y). (6)

We recall some results that the interested reader can find in [3] and [10].

Lemma 1 If a maximum point in (5) exists, then we have

z �C\{O} O, ∀z ∈ max
(u,v)∈K

C\{O}w(u, v,Θ, Λ), ∀Θ ∈ U∗
C\{O}, ∀Λ ∈ V ∗

C . (7)

Theorem 2 For any y ∈ Y and Λ ∈ V ∗
C it results:

f(y) �C\{O} z, ∀z ∈ min
x∈X

C\{O}[f(x) − Λg(x)]. (8)

Let us recall the definition of vector Maximum of the set-valued map Φ : U∗
C\{O}×V ∗

C ⇉ R
ℓ,

where Φ(Θ, Λ) is the set of the optimal values of (5).
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Definition 1 (Θ̂, Λ̂) ∈ U∗
C\{O} × V ∗

C is a vector Maximum, with respect to the cone C\{O}, of

the set-valued map Φ(Θ,Λ) iff

∃ẑ ∈ Φ(Θ̂, Λ̂) s.t. ẑ �C\{O} z, ∀z ∈ Φ(Θ,Λ), ∀(Θ,Λ) ∈ U∗
C\{O} × V ∗

C .

The definition of vector Minimum is quite analogous.

Let us now define the following vector optimization problem of set-valued functions:

MaxC\{O} minC\{O} LV (x,Λ)

Λ ∈ V ∗
C x ∈ X

(9)

where LV (x,Λ) = f(x) − Λg(x) is the vector Lagrangian function and Max denotes the vector

Maximum of a set-valued map. Problem (9) will be called the vector dual problem of (1). Observe

that when ℓ = 1 and C = R+, (9) collapses to the well-known Lagrangian dual. Theorem 2

states that the vector of the objectives of the primal (1), evaluated at any feasible solution y, is

not less than or equal to the vector of the objectives of the dual (9), calculated at any Λ ∈ V ∗
C ;

hence Theorem 2 is a weak Duality Theorem, in the vector case.

If in Theorem 2 all the extremes are made with respect to intC instead of C\{O}, we obtain

Theorem 4.1 of [14]. Theorem 2 is exactly Theorem 5.2.4 of [12]; here we stress the fact that

Theorem 2 is a straightforward consequence of Lemma 1; i.e. of vector separation in the image

space performed by function w(u, v,Θ,Λ) when Θ = Iℓ.

Consider the set

Ω = MinC\{O} w(u, v, Θ,Λ).

Θ ∈ U∗
C\{O}

Λ ∈ V ∗
C

The following result holds.

Lemma 2 There exist Θ̄ ∈ U∗
C\{O} and Λ̄ ∈ V ∗

C such that

w(u, v, Θ̄, Λ̄) �C\{O} O, ∀(u, v) ∈ K(y) (10)

iff O ∈ Ω.

Now define the following sets:

∆1 := minC\{O} f(x) and ∆2 := MaxC\{O} [f(x) − Λg(x)].

x ∈ Y Λ ∈ V ∗
C
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Observe that if ∆1 ∩ ∆2 6= Ø, or equivalently O ∈ ∆ := ∆1 − ∆2, then there exist an optimal

solution of the primal problem and an optimal solution of the dual such that the corresponding

optimal vector values are equal; i.e., the two problems possess at least a common optimal value.

When ℓ = 1 and C = R+, the condition O ∈ ∆ becomes ∆ = {0} or, equivalently,

min
x∈Y

f(x) = max
λ∈Rm

+

min
x∈X

[f(x) − 〈λ, g(x)〉],

which means that the duality gap is equal to 0 in the scalar case. Hence the study of the sets ∆1

and ∆2 and of their intersection leads to consider a concept of duality gap in vector optimization;

to this aim see [1].

The following lemma gives condition equivalent to O ∈ ∆; it translates the analogous condi-

tion expressed in the image space by Lemma 2.

Lemma 3 There exist y ∈ Y and Λ̄ ∈ V ∗
C such that

[f(y) − f(x)] + Λ̄g(x) �C\{O} O, ∀x ∈ X (11)

iff O ∈ ∆.

We have a necessary and sufficient condition for having an optimal solution of (1) and an optimal

solution of its dual problem, such that the corresponding optimal vector values are equal. This

is obviously a generalization of the duality gap equal to zero for the scalar case. It is interesting

to define classes of vector problems for which (11) is fulfilled. This happens, for instance, when

the problem is linear.

3 The linear case

In this section we want to show that a known vector linear dual, i.e. that of Isermann [5], can

be enclosed in the separation scheme introduced in Sect.2.

Taking into account the approach of Isermann, but using our notation, let us consider the

following linear Pareto vector problem:

min
Rℓ

+
\{O}Dx subject to x ∈ P = {x ∈ Rn : Ax = b, x ≥ O}, (12)

where D is the ℓ × n criterion matrix, A is an m × n matrix with rankA = m and b ∈ Rm.

Problem (12) can be put in the format of problem (1) if we consider

g(x) =





Ax − b

−Ax + b




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X = {x ∈ Rn : x ≥ O} and the cone C = R
ℓ
+. Hence, following the definition of vector dual

problem given in (9), the vector dual of (12) is:

Max
Rℓ

+
\{O} min

Rℓ
+
\{O} [Dx − Λ(Ax − b)],

Λ x ≥ 0
(13)

where no condition is imposed on Λ because of the equality constraints in (12).

Let us consider the following set: T = {Λ ∈ Rℓ×m : (ΛA − D)x �
Rℓ

+
\{O} O, ∀x ≥ O} and

its complement T = {Λ ∈ Rℓ×m : ∃x ≥ O such that (ΛA − D)x ≥
Rℓ

+
\{O} O}. For every Λ ∈ T

there exist x ≥ O such that (D−ΛA)x ∈ −Rℓ
+\{O} and hence (D−ΛA)x + Λb is not bounded

from below on x ≥ O. Therefore in (13) we can restrict the analysis to Λ ∈ T .

Proposition 2

Λ ∈ T iff Λb ∈ min
x≥O

Rℓ
+
\{O}[Dx − Λ(Ax − b)].

Proof: Starting from the definition of set T , we have the following sequence of equivalences:

Λ ∈ T ⇐⇒ Dx − ΛAx �
Rℓ

+
\{O} O, ∀x ≥ O

⇐⇒ Dx − ΛAx + Λb �
Rℓ

+
\{O} Λb, ∀x ≥ O

⇐⇒ Dx − Λ(Ax − b) �
Rℓ

+
\{O} Λb, ∀x ≥ O

⇐⇒ Λb ∈ min
Rℓ

+
\{O} [Dx − Λ(Ax − b)].

x ≥ O

2 Proposition 2 shows that Λ ∈ T iff Λb is one of the minimum vector values of the problem

min
x≥O

Rℓ
+
\{O}[Dx − Λ(Ax − b)].

In [5], Isermann defines the vector dual problem of (12) by substituting

min
x≥O

Rℓ
+
\{O}[Dx − Λ(Ax − b)]

with the single particular value Λb:

max
Λ

Rℓ
+
\{O}Λb subject to Λ ∈ T. (14)

The above substitution maintains the properties of the primal-dual expressed by Theorem 2.

Let us recall that, in the linear case, we have:

∆1 := min
Rℓ

+
\{O} Dx and ∆2 := Max

Rℓ
+
\{O} Λb.

x ∈ P Λ ∈ T
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Theorem 3 (see [5] or Theorem 5.1.4 of [12]) The following statements hold:

i) Dx �
Rℓ

+
\{O} Λb, ∀x ∈ P, ∀Λ ∈ T ;

ii) ∆1 = ∆2.

4 Examples and applications

In the literature, there are not many works that deals with the economic description of vector

dual problems. We cite, for instance, [15] and [16], that propose a non linear primal problem

for minimizing the risk (i.e., the variance) and maximizing the expected return of a financial

portfolio at the same time. However, in these works, there is not an economic interpretation of

the dual variables obtained by the exploited duality scheme.

4.1 Minimization of costs

A classical example in the economic theory, that fits in an optimization problem, is the min-

imization of the costs of a firm. We extend this example to one with two conflicting goals:

minimization of costs and minimization of pollution. We focus on the linear case.

We may imagine that a firm has to produce m different outputs, i.e. P1, . . . , Pm, with n

available resources, i.e. R1, . . . , Rn, xj , j = 1, . . . , n is the unknown quantity of jth resource

necessary in the production process, bk, k = 1, . . . ,m is the demanded quantity of product Pk

and an element akj ∈ A; k = 1, . . . ,m; j = 1, . . . , n denotes the quantity of product Pk obtained

by the employment of a unit of resource Rj . This firm tries to minimize its production costs,

〈d1, x〉, meanwhile the minimization of pollution, associated to the production process, 〈d2, x〉,

is an objective that clashes with the previous one. The vector primal problem is:

PL :=



















min(〈d1, x〉, 〈d2, x〉)

Ax = b

x ≥ O

.

From this primal problem, we derive the vector dual due to Isermann:

DL :=







max(〈λ1, b〉, 〈λ2, b〉)

Λ ∈ {Λ ∈ Rℓ×ms.t.(D − ΛA)w /∈ −R2
+\{0}, ∀w ≥ 0}

.
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The constraints of the primal problem imply the equality between the demand and the supply

of the products Pk, k = 1, . . . ,m. Suppose now that we do not start the production process, but

we directly buy the final products at the price λ1
k ≥ 0;

∑m
k=1 λ1

kakj gives the total cost to buy the

final product and
∑m

k=1 λ2
kakj gives the total pollution implied by the production of P1, . . . , Pm.

This alternative strategy is equivalent to that one of the primal problem if
∑m

k=1 λ1
kakj = d1

j and
∑m

k=1 λ2
kakj = d2

j . This fact leads to the definition of the feasible region of the dual problem. In

order to find a feasible matrix Λ, ∀w ≥ 0 either
〈

d1T − λ1T A,w
〉

≥ 0 or
〈

d2T − λ2T A,w
〉

≥ 0

must be verified. Hence, the second strategy looks for the system of prices that satisfies the

previous conditions in a way to result as less disadvantageous as possible. The term “shadow

prices” referred to λ1
k and λ2

k, k = 1, . . . ,m, is interpreted as the maximal price that the firm

is willing to pay to buy directly the final product instead of to produce them by itself, or the

amount of pollution that the firm is willing to take, respectively.

Let us now do some considerations based on a simple numerical example. Take, for instance,

PL :=



















min(1/4x1 + x2, 4x1 + x2)

x1 + x2 = 4

xj ≥ 0, j = 1, 2

.

The coefficients of both objective functions are positive, since they represent costs and pollution

rates. A product is realized by means of two resources, x1 and x2. These resources are comple-

mentary, we mean that an increase in the use of the first one implies a decrease in the use of

the other (for instance, capital and labour).

The dual problem is the following:

DL :=



















max(4λ1, 4λ2)




(1/4 − λ1)w1 + (1 − λ1)w2

(4 − λ2)w1 + (1 − λ2)w2



 /∈ −R2
+\{0}, ∀w ≥ 0

,

where λ1 = λ1
1 and λ2 = λ2

1. Let us call





1/4 − λ1 1 − λ1

4 − λ2 1 − λ2



 =





α11 α12

α21 α22



 .

The feasible region of the dual problem may be represented as in figure 1.

On the efficient frontier, there is a reverse relation between λ1 and λ2: if there is an increase

of the price of a product, call it Pk, the demand of Pk decreases, and so does the production of Pk

9



Figure 1

causing a reduction of pollution. Otherwise, we can say that a decrease in pollution, generated

by the production process of Pk, implies an increase in the price of Pk, since the quality of this

product is better than before.

Consider, for a while, the scheme of the feasible region of the dual problem as in figure 2.

Figure 2

We want to do some remarks on the different areas that compose it. In α we have high rates

of pollution and low prices. The production of goods of this kind should be forbid by the state

till to converge to point A. In γ there is also an interesting situation about pollution rates, but

the production is too expensive. Maybe, for this kind of products, the state should propose some

sort of incentive to maintain low prices. These two areas render the feasible region non-convex;

it could be interesting to think of a dual problem that does not take them into consideration.
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In β there is a quite good level of pollution, but it is sustainable only if the selling price is that

one on the frontier. In η and β′ the situation is the best as possible (low prices, low pollution),

but probably, the firms do not produce this kind of goods, since it is more convenient for them

to converge to point B. δ, δ′ and ε do not belong to the feasible region; in fact, the efficient

frontier represent a better situation than that one described by a point of these areas.

We may also propose some considerations on the vector problem starting by the Lagrangian

function. Let us define the vector Lagrangian function as: LV : Rn ×Rℓ×m → R
ℓ, LV (x; Λ) =

Dx − Λ(Ax − b).

In our example LV : R2 ×R2×1 → R
2, where

D =





d1T

d2T



 Λ =





λ1

λ2



 .

The two components of the Lagrangian function are:

(LV )1 =
〈

d1, x
〉

− 〈λ1, Ax − b〉 and

(LV )2 =
〈

d2, x
〉

− 〈λ2, Ax − b〉 .

If sk =
∑n

j=1 akjxj − bk > 0, k = 1, . . . ,m, we have an excess of production, then 〈λ1, sk〉 is

a revenue to be subtracted to the total costs if we sell on the market this quantity; moreover,

this quantity implies a decrease of the production of the other firms, so that the total pollution
〈

d2, x
〉

is reduced by the quantity 〈λ2, sk〉.

4.2 Maximization of profit

We suppose now that a firm has to produce n outputs, P1, . . . , Pn, such that the unknown

amount is x = (x1, . . . , xn), using m resources, R1, . . . , Rm, available in the limited quantity

b = (b1, . . . , bm). An element akj ∈ A; k = 1, . . . ,m; j = 1, . . . , n denotes the quantity of

resource Rk necessary to the production of a unit of output Pj . The firm sells on the market

the products in order to maximize the profit, 〈d1, x〉. Other hypothesis are that the costs are

linear, the markets are competitive and all the production may be sold. In order to render this

problem a vector problem with two conflicting goals we introduce a second objective function,

that is the maximization of profit by a second firm, 〈d2, x〉. The vector primal problem is:

PL :=



















max(〈d1, x〉, 〈d2, x〉)

Ax = b

x ≥ O

,

11



and the Isermann vector dual problem is:

DL :=







min(〈λ1, b〉, 〈λ2, b〉)

Λ ∈ {Λ ∈ Rℓ×ms.t.(D − ΛA)w /∈ R2
+\{0}, ∀w ≥ 0}

.

We can think now to this alternative strategy: the firms, instead of sell their production, may

sell on the market the resources necessary to the transformation process at the price λ1
k, k =

1, . . . ,m. The two strategies are equivalent if
∑m

k=1 λ1
kakj = d1

j and
∑m

k=1 λ2
kakj = d2

j . This

fact implies the definition of the feasible region of the dual problem. In order to find a feasible

matrix Λ, ∀w ≥ 0 either
〈

d1T − λ1T A,w
〉

≤ 0 or
〈

d2T − λ2T A,w
〉

≤ 0 must be verified. So, the

second strategy looks for the system of prices that renders the transformation of the resources

as less advantageous as possible. The term “shadow prices” referred to λ1
k and λ2

k, k = 1, . . . ,m,

is interpreted as the minimal price that the firm is willing to attribute to the kth resource, such

that the production process may not be performed.

We introduce now a simple numerical example. Take, for instance,

PL :=



















min(−1/4x1 + x2, 4x1 − x2)

x1 + x2 = 4

xj ≥ 0, j = 1, 2

.

The coefficients of the two objective functions may be negative, since the profit may be a loss. On

the efficient frontier, an increase in the production of a good implies a decrease in the production

of the other, since the available resources are limited.

The dual problem is the following:

DL :=



















max(4λ1, 4λ2)




(−1/4 − λ1)w1 + (1 − λ1)w2

(4 − λ2)w1 + (−1 − λ2)w2



 /∈ R2
+\{0}, ∀w ≥ 0

,

where λ1 = λ1
1 and λ2 = λ2

1. Let us call





−1/4 − λ1 1 − λ1

4 − λ2 −1 − λ2



 =





α11 α12

α21 α22



 .

The feasible region of the dual problem may be represented by figure 3.

There exists a reverse relation between the efficient λ1 and λ2. We try to explain this fact

as follows: if the contribution of a resource to the production process of a firm raises, then

12



Figure 3

the demand of this resource raises and the availability of this for the second firm decreases.

Consequently the growth of a firm implies necessarily the fall down of the other one.

Let us consider figure 4, that is the scheme of the feasible region of the dual problem.

Figure 4

The different areas that compose the scheme may be interpreted in this manner: in α the

second firm wants to attribute an high value to the resource, but it could be justified only in

a monopolistic framework; thus, to avoid the exit of the first firm from the market, the best

situation is that one described by the point A. It happens the same in γ with the reverse order of
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the firms. Also in this example, α and γ are the areas which give a non-convex characterization

to the feasible region. In ε both the firms are overestimating the resource; probably the value

of this resource could be that one only in the case of a cartel of the two firms. In β and β′ there

is a firm which attributes a too high value to the resource, the first one and the second one,

respectively. δ, δ′ and η do not belong to the feasible region.

As in the previous example, we can now do some remarks about the vector Lagrangian

function. The two components of the Lagrangian function are:

(LV )1 =
〈

d1, x
〉

+ 〈λ1, b − Ax〉 and

(LV )2 =
〈

d2, x
〉

+ 〈λ2, b − Ax〉 .

If sk = bk −
∑n

j=1 akjxj > 0, k = 1, . . . ,m, we have an unsold stock of the kth resource, then

〈λ1, sk〉 is the revenue that the first firm obtains from the sell of this quantity; moreover, this

revenue may be summed to the profit of the firm, that is
〈

d1, x
〉

. The same argument is valid

for the second firm.

5 Concluding remarks

This paper proposes a way to represent the vector dual problem in the linear case, in order to

interpret the dual variables (a vector of variables for each objective function) and the possible

relationships existing among them.

The examples are taken from an elementary context, but it is only the first step towards

a theory that can be analyzed in a more general framework, for instance the non-linear or the

non-convex one.

Obviously only in a setting of two objectives and one constraint we can plot easily the graph.

We observe that the feasible region of the dual problem is not convex, even in the linear case;

moreover, the areas which renders this region non-convex are those of less interest, we mean

that by the interpretation of the points belonging to these areas, they could be disregarded.

Matter of future studies could be to find a duality scheme that reduces the feasible region of

the dual in order to make it convex, at least in the linear case.
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