510,030 research outputs found
E-Governance in Ireland: New Technologies, Local Government and Civic Participation
example keyword,example keyword, example keyword
Rethinking Non-Intervention and Democratic Regime Change
example keyword,example keyword, example keyword
Generating Synthetic Data for Neural Keyword-to-Question Models
Search typically relies on keyword queries, but these are often semantically
ambiguous. We propose to overcome this by offering users natural language
questions, based on their keyword queries, to disambiguate their intent. This
keyword-to-question task may be addressed using neural machine translation
techniques. Neural translation models, however, require massive amounts of
training data (keyword-question pairs), which is unavailable for this task. The
main idea of this paper is to generate large amounts of synthetic training data
from a small seed set of hand-labeled keyword-question pairs. Since natural
language questions are available in large quantities, we develop models to
automatically generate the corresponding keyword queries. Further, we introduce
various filtering mechanisms to ensure that synthetic training data is of high
quality. We demonstrate the feasibility of our approach using both automatic
and manual evaluation. This is an extended version of the article published
with the same title in the Proceedings of ICTIR'18.Comment: Extended version of ICTIR'18 full paper, 11 page
Keyword-aware Optimal Route Search
Identifying a preferable route is an important problem that finds
applications in map services. When a user plans a trip within a city, the user
may want to find "a most popular route such that it passes by shopping mall,
restaurant, and pub, and the travel time to and from his hotel is within 4
hours." However, none of the algorithms in the existing work on route planning
can be used to answer such queries. Motivated by this, we define the problem of
keyword-aware optimal route query, denoted by KOR, which is to find an optimal
route such that it covers a set of user-specified keywords, a specified budget
constraint is satisfied, and an objective score of the route is optimal. The
problem of answering KOR queries is NP-hard. We devise an approximation
algorithm OSScaling with provable approximation bounds. Based on this
algorithm, another more efficient approximation algorithm BucketBound is
proposed. We also design a greedy approximation algorithm. Results of empirical
studies show that all the proposed algorithms are capable of answering KOR
queries efficiently, while the BucketBound and Greedy algorithms run faster.
The empirical studies also offer insight into the accuracy of the proposed
algorithms.Comment: VLDB201
Reasoning & Querying – State of the Art
Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF
Who Spoke What? A Latent Variable Framework for the Joint Decoding of Multiple Speakers and their Keywords
In this paper, we present a latent variable (LV) framework to identify all
the speakers and their keywords given a multi-speaker mixture signal. We
introduce two separate LVs to denote active speakers and the keywords uttered.
The dependency of a spoken keyword on the speaker is modeled through a
conditional probability mass function. The distribution of the mixture signal
is expressed in terms of the LV mass functions and speaker-specific-keyword
models. The proposed framework admits stochastic models, representing the
probability density function of the observation vectors given that a particular
speaker uttered a specific keyword, as speaker-specific-keyword models. The LV
mass functions are estimated in a Maximum Likelihood framework using the
Expectation Maximization (EM) algorithm. The active speakers and their keywords
are detected as modes of the joint distribution of the two LVs. In mixture
signals, containing two speakers uttering the keywords simultaneously, the
proposed framework achieves an accuracy of 82% for detecting both the speakers
and their respective keywords, using Student's-t mixture models as
speaker-specific-keyword models.Comment: 6 pages, 2 figures Submitted to : IEEE Signal Processing Letter
- …
