510,030 research outputs found

    E-Governance in Ireland: New Technologies, Local Government and Civic Participation

    Get PDF
    example keyword,example keyword, example keyword

    Rethinking Non-Intervention and Democratic Regime Change

    Get PDF
    example keyword,example keyword, example keyword

    Generating Synthetic Data for Neural Keyword-to-Question Models

    Full text link
    Search typically relies on keyword queries, but these are often semantically ambiguous. We propose to overcome this by offering users natural language questions, based on their keyword queries, to disambiguate their intent. This keyword-to-question task may be addressed using neural machine translation techniques. Neural translation models, however, require massive amounts of training data (keyword-question pairs), which is unavailable for this task. The main idea of this paper is to generate large amounts of synthetic training data from a small seed set of hand-labeled keyword-question pairs. Since natural language questions are available in large quantities, we develop models to automatically generate the corresponding keyword queries. Further, we introduce various filtering mechanisms to ensure that synthetic training data is of high quality. We demonstrate the feasibility of our approach using both automatic and manual evaluation. This is an extended version of the article published with the same title in the Proceedings of ICTIR'18.Comment: Extended version of ICTIR'18 full paper, 11 page

    Keyword-aware Optimal Route Search

    Full text link
    Identifying a preferable route is an important problem that finds applications in map services. When a user plans a trip within a city, the user may want to find "a most popular route such that it passes by shopping mall, restaurant, and pub, and the travel time to and from his hotel is within 4 hours." However, none of the algorithms in the existing work on route planning can be used to answer such queries. Motivated by this, we define the problem of keyword-aware optimal route query, denoted by KOR, which is to find an optimal route such that it covers a set of user-specified keywords, a specified budget constraint is satisfied, and an objective score of the route is optimal. The problem of answering KOR queries is NP-hard. We devise an approximation algorithm OSScaling with provable approximation bounds. Based on this algorithm, another more efficient approximation algorithm BucketBound is proposed. We also design a greedy approximation algorithm. Results of empirical studies show that all the proposed algorithms are capable of answering KOR queries efficiently, while the BucketBound and Greedy algorithms run faster. The empirical studies also offer insight into the accuracy of the proposed algorithms.Comment: VLDB201

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Who Spoke What? A Latent Variable Framework for the Joint Decoding of Multiple Speakers and their Keywords

    Full text link
    In this paper, we present a latent variable (LV) framework to identify all the speakers and their keywords given a multi-speaker mixture signal. We introduce two separate LVs to denote active speakers and the keywords uttered. The dependency of a spoken keyword on the speaker is modeled through a conditional probability mass function. The distribution of the mixture signal is expressed in terms of the LV mass functions and speaker-specific-keyword models. The proposed framework admits stochastic models, representing the probability density function of the observation vectors given that a particular speaker uttered a specific keyword, as speaker-specific-keyword models. The LV mass functions are estimated in a Maximum Likelihood framework using the Expectation Maximization (EM) algorithm. The active speakers and their keywords are detected as modes of the joint distribution of the two LVs. In mixture signals, containing two speakers uttering the keywords simultaneously, the proposed framework achieves an accuracy of 82% for detecting both the speakers and their respective keywords, using Student's-t mixture models as speaker-specific-keyword models.Comment: 6 pages, 2 figures Submitted to : IEEE Signal Processing Letter
    corecore