3 research outputs found

    Large Scale Clustering with Variational EM for Gaussian Mixture Models

    Full text link
    How can we efficiently find large numbers of clusters in large data sets with high-dimensional data points? Our aim is to explore the current efficiency and large-scale limits in fitting a parametric model for clustering to data distributions. To do so, we combine recent lines of research which have previously focused on separate specific methods for complexity reduction. We first show theoretically how the clustering objective of variational EM (which reduces complexity for many clusters) can be combined with coreset objectives (which reduce complexity for many data points). Secondly, we realize a concrete highly efficient iterative procedure which combines and translates the theoretical complexity gains of truncated variational EM and coresets into a practical algorithm. For very large scales, the high efficiency of parameter updates then requires (A) highly efficient coreset construction and (B) highly efficient initialization procedures (seeding) in order to avoid computational bottlenecks. Fortunately very efficient coreset construction has become available in the form of light-weight coresets, and very efficient initialization has become available in the form of AFK-MC2^2 seeding. The resulting algorithm features balanced computational costs across all constituting components. In applications to standard large-scale benchmarks for clustering, we investigate the algorithm's efficiency/quality trade-off. Compared to the best recent approaches, we observe speedups of up to one order of magnitude, and up to two orders of magnitude compared to the kk-means++ baseline. To demonstrate that the observed efficiency enables previously considered unfeasible applications, we cluster the entire and unscaled 80 Mio. Tiny Images dataset into up to 32,000 clusters. To the knowledge of the authors, this represents the largest scale fit of a parametric data model for clustering reported so far

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested
    corecore